CASIA OpenIR  > 模式识别国家重点实验室  > 自然语言处理
Domain Adaptation in NLP based on Hybrid Generative and Discriminative Model
Liu Kang; Zhao Jun
2008
发表期刊Chinese Conference one Pattern Recognition
期号2008页码:1-6
摘要This study investigates the domain adaptation problem for nature language processing tasks in the distributional view. A novel method is proposed for domain adaptation based on the hybrid model which combines the discriminative model with the generative model. The advantage of the discriminative model is to have lower asymptotic error, while the advantage of the generative model can easily incorporate the unlabeled data for better generalization performance. The hybrid model can integrate their advantages. For domain transfer, the proposed method exploits the difference of the distributions in different domains to adjust the weights of the instances in the training set so that the source labeled data is more adaptive to the target domain. Experimental results on several NLP tasks in different domains indicate that our method outperforms both the traditional supervised learning and the semi-supervised method.
关键词Domain Adaptation
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20666
专题模式识别国家重点实验室_自然语言处理
推荐引用方式
GB/T 7714
Liu Kang,Zhao Jun. Domain Adaptation in NLP based on Hybrid Generative and Discriminative Model[J]. Chinese Conference one Pattern Recognition,2008(2008):1-6.
APA Liu Kang,&Zhao Jun.(2008).Domain Adaptation in NLP based on Hybrid Generative and Discriminative Model.Chinese Conference one Pattern Recognition(2008),1-6.
MLA Liu Kang,et al."Domain Adaptation in NLP based on Hybrid Generative and Discriminative Model".Chinese Conference one Pattern Recognition .2008(2008):1-6.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Domain Adaptation in(230KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu Kang]的文章
[Zhao Jun]的文章
百度学术
百度学术中相似的文章
[Liu Kang]的文章
[Zhao Jun]的文章
必应学术
必应学术中相似的文章
[Liu Kang]的文章
[Zhao Jun]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Domain Adaptation in NLP based on Hybrid Generative and Discriminative Model.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。