基于表示学习的知识库问答研究进展与展望 | |
Liu Kang![]() | |
发表期刊 | ACTA AUTOMATICA SINICA
![]() |
2016 | |
期号 | 42页码:807-818 |
其他摘要 | Question answering over knowledge base (KBQA) is an important direction for the research of question answering. Recently, with the drastic development of deep learning, researchers and developers have paid more attentions to KBQA from this angle. They regarded this problem as a task of semantic matching. The semantics of knowledge base and users' questions are learned through representation learning under the framework of deep learning. The entities and relations in knowledge base and the texts in questions could be represented as numerical vectors. Then, the answer could be figured out through similarity computation between the vectors of knowledge base and the vectors of the given question. From reported results, KBQA based on representation learning has obtained the best performance. This paper introduces the mainstream methods in this area. It further induces the typical approaches of representation learning on knowledge base and texts (questions), respectively. Finally, the current research challenges are discussed. |
关键词 | 表示学习 |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ia.ac.cn/handle/173211/20670 |
专题 | 模式识别国家重点实验室_自然语言处理 |
通讯作者 | Liu Kang |
推荐引用方式 GB/T 7714 | Liu Kang,Zhang Yuanzhe,Ji Guolaing,等. 基于表示学习的知识库问答研究进展与展望[J]. ACTA AUTOMATICA SINICA,2016(42):807-818. |
APA | Liu Kang,Zhang Yuanzhe,Ji Guolaing,Lai Siwei,&Zhao Jun.(2016).基于表示学习的知识库问答研究进展与展望.ACTA AUTOMATICA SINICA(42),807-818. |
MLA | Liu Kang,et al."基于表示学习的知识库问答研究进展与展望".ACTA AUTOMATICA SINICA .42(2016):807-818. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
基于网络语义标签的多源知识库实体对齐算法(747KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论