CASIA OpenIR  > 模式识别国家重点实验室  > 机器人视觉
High-Resolution Remote Sensing Data Classification over Urban Areas Using Random Forest Ensemble and Fully Connected Conditional Random Field
Sun, Xiaofeng1,2; Lin, Xiangguo3; Shen, Shuhan1,2; Hu, Zhanyi1,2
2017-08-01
发表期刊ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION
卷号6期号:8页码:1-26
文章类型Article
摘要As an intermediate step between raw remote sensing data and digital maps, remote sensing data classification has been a challenging and long-standing problem in the remote sensing research community. In this work, an automated and effective supervised classification framework is presented for classifying high-resolution remote sensing data. Specifically, the presented method proceeds in three main stages: feature extraction, classification, and classified result refinement. In the feature extraction stage, both multispectral images and 3D geometry data are used, which utilizes the complementary information from multisource data. In the classification stage, to tackle the problems associated with too many training samples and take full advantage of the information in the large-scale dataset, a random forest (RF) ensemble learning strategy is proposed by combining several RF classifiers together. Finally, an improved fully connected conditional random field (FCCRF) graph model is employed to derive the contextual information to refine the classification results. Experiments on the ISPRS Semantic Labeling Contest dataset show that the presented 3-stage method achieves 86.9% overall accuracy, which is a new state-of-the-art non-CNN (convolutional neural networks)-based classification method.
关键词Semantic Labeling Random Forest Conditional Random Field Differential Morphological Profile Ensemble Learning
WOS标题词Science & Technology ; Physical Sciences ; Technology
DOI10.3390/ijgi6080245
关键词[WOS]SUPPORT VECTOR MACHINES ; IMAGE CLASSIFICATION ; FEATURE-EXTRACTION ; AERIAL IMAGES ; POINT CLOUDS ; LAND-COVER ; FUSION ; SEGMENTATION ; PROFILES ; SCENES
收录类别SCI
语种英语
项目资助者National Key R&D Program of China(2016YFB0502002) ; Natural Science Foundation of China(61632003 ; 61333015 ; 61473292 ; 41371405)
WOS研究方向Physical Geography ; Remote Sensing
WOS类目Geography, Physical ; Remote Sensing
WOS记录号WOS:000408868400017
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20727
专题模式识别国家重点实验室_机器人视觉
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, 19 Yuquan Rd, Beijing 100049, Peoples R China
3.Chinese Acad Surveying & Mapping, Inst Photogrammetry & Remote Sensing, 28 Lianhuachixi Rd, Beijing 100830, Peoples R China
推荐引用方式
GB/T 7714
Sun, Xiaofeng,Lin, Xiangguo,Shen, Shuhan,et al. High-Resolution Remote Sensing Data Classification over Urban Areas Using Random Forest Ensemble and Fully Connected Conditional Random Field[J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION,2017,6(8):1-26.
APA Sun, Xiaofeng,Lin, Xiangguo,Shen, Shuhan,&Hu, Zhanyi.(2017).High-Resolution Remote Sensing Data Classification over Urban Areas Using Random Forest Ensemble and Fully Connected Conditional Random Field.ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION,6(8),1-26.
MLA Sun, Xiaofeng,et al."High-Resolution Remote Sensing Data Classification over Urban Areas Using Random Forest Ensemble and Fully Connected Conditional Random Field".ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 6.8(2017):1-26.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
IJGI17.pdf(18038KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Xiaofeng]的文章
[Lin, Xiangguo]的文章
[Shen, Shuhan]的文章
百度学术
百度学术中相似的文章
[Sun, Xiaofeng]的文章
[Lin, Xiangguo]的文章
[Shen, Shuhan]的文章
必应学术
必应学术中相似的文章
[Sun, Xiaofeng]的文章
[Lin, Xiangguo]的文章
[Shen, Shuhan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: IJGI17.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。