CASIA OpenIR  > 智能感知与计算研究中心
Supervised Discrete Hashing With Relaxation
Gui, Jie1,2; Liu, Tongliang3,4; Sun, Zhenan5; Tao, Dacheng6; Tan, Tieniu5
2018-03-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
卷号29期号:3页码:608-617
文章类型Article
摘要Data-dependent hashing has recently attracted attention due to being able to support efficient retrieval and storage of high-dimensional data, such as documents, images, and videos. In this paper, we propose a novel learning-based hashing method called "supervised discrete hashing with relaxation" (SDHR) based on "supervised discrete hashing" (SDH). SDH uses ordinary least squares regression and traditional zero-one matrix encoding of class label information as the regression target (code words), thus fixing the regression target. In SDHR, the regression target is instead optimized. The optimized regression target matrix satisfies a large margin constraint for correct classification of each example. Compared with SDH, which uses the traditional zero-one matrix, SDHR utilizes the learned regression target matrix and, therefore, more accurately measures the classification error of the regression model and is more flexible. As expected, SDHR generally outperforms SDH. Experimental results on two large-scale image data sets (CIFAR-10 and MNIST) and a large-scale and challenging face data set (FRGC) demonstrate the effectiveness and efficiency of SDHR.
关键词Data-dependent Hashing Least Squares Regression Supervised Discrete Hashing (Sdh) Supervised Discrete Hashing With Relaxation (Sdhr)
WOS标题词Science & Technology ; Technology
DOI10.1109/TNNLS.2016.2636870
关键词[WOS]LEARNING BINARY-CODES ; ITERATIVE QUANTIZATION ; PROCRUSTEAN APPROACH ; IMAGE RETRIEVAL ; RECOGNITION ; SCENE
收录类别SCI
语种英语
项目资助者National Science Foundation of China(61572463 ; Open Project Program of the National Laboratory of Pattern Recognition (NLPR)(201700027) ; CCF-Tencent Open Fund ; Australian Research Council(DP-140102164 ; 61573360) ; FT-130101457 ; LE-140100061)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000426344600009
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20763
专题智能感知与计算研究中心
通讯作者Sun, Zhenan
作者单位1.Chinese Acad Sci, Inst Intelligent Machines, Hefei 230031, Anhui, Peoples R China
2.Shenzhen Univ, Shenzhen Key Lab Media Secur, Shenzhen 518060, Peoples R China
3.Univ Technol Sydney, Ctr Artificial Intelligence, Sydney, NSW 2007, Australia
4.Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
5.Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Natl Lab Pattern Recognit, Inst Automat,CAS Ctr Excellence Brain Sci & Intel, Beijing 100190, Peoples R China
6.Univ Sydney, Sch Informat Technol, Fac Engn & Informat Technol, Sydney, NSW 2006, Australia
推荐引用方式
GB/T 7714
Gui, Jie,Liu, Tongliang,Sun, Zhenan,et al. Supervised Discrete Hashing With Relaxation[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,29(3):608-617.
APA Gui, Jie,Liu, Tongliang,Sun, Zhenan,Tao, Dacheng,&Tan, Tieniu.(2018).Supervised Discrete Hashing With Relaxation.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,29(3),608-617.
MLA Gui, Jie,et al."Supervised Discrete Hashing With Relaxation".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 29.3(2018):608-617.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gui, Jie]的文章
[Liu, Tongliang]的文章
[Sun, Zhenan]的文章
百度学术
百度学术中相似的文章
[Gui, Jie]的文章
[Liu, Tongliang]的文章
[Sun, Zhenan]的文章
必应学术
必应学术中相似的文章
[Gui, Jie]的文章
[Liu, Tongliang]的文章
[Sun, Zhenan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。