CASIA OpenIR  > 智能感知与计算研究中心
Fast Supervised Discrete Hashing
Gui, Jie1; Liu, Tongliang2,3; Sun, Zhenan4,5; Tao, Dacheng2,3; Tan, Tieniu4,5
2018-02-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
卷号40期号:2页码:490-496
文章类型Article
摘要Learning-based hashing algorithms are "hot topics" because they can greatly increase the scale at which existing methods operate. In this paper, we propose a new learning-based hashing method called "fast supervised discrete hashing" (FSDH) based on "supervised discrete hashing" (SDH). Regressing the training examples (or hash code) to the corresponding class labels is widely used in ordinary least squares regression. Rather than adopting this method, FSDH uses a very simple yet effective regression of the class labels of training examples to the corresponding hash code to accelerate the algorithm. To the best of our knowledge, this strategy has not previously been used for hashing. Traditional SDH decomposes the optimization into three sub-problems, with the most critical sub-problem - discrete optimization for binary hash codes - solved using iterative discrete cyclic coordinate descent (DCC), which is time-consuming. However, FSDH has a closed-form solution and only requires a single rather than iterative hash code-solving step, which is highly efficient. Furthermore, FSDH is usually faster than SDH for solving the projection matrix for least squares regression, making FSDH generally faster than SDH. For example, our results show that FSDH is about 12-times faster than SDH when the number of hashing bits is 128 on the CIFAR-10 data base, and FSDH is about 151-times faster than FastHash when the number of hashing bits is 64 on the MNIST data-base. Our experimental results show that FSDH is not only fast, but also outperforms other comparative methods.
关键词Fast Supervised Discrete Hashing Supervised Discrete Hashing Learning-based Hashing Least Squares Regression
WOS标题词Science & Technology ; Technology
DOI10.1109/TPAMI.2017.2678475
关键词[WOS]LEARNING BINARY-CODES ; IMAGE RETRIEVAL ; ITERATIVE QUANTIZATION ; PROCRUSTEAN APPROACH ; REPRESENTATION ; RECOGNITION ; SCENE
收录类别SCI
语种英语
项目资助者National Science Foundation of China(61572463 ; "Thirteenth Five-Year" National Key Research and Development Program of China(2016YFD0702002) ; grant of Strategic Priority Research Program of the Chinese Academy of Sciences(XDB02080007) ; grant of the Open Project Program of the National Laboratory of Pattern Recognition (NLPR)(201700027) ; grant of the Open Project Program of the State Key Lab of CADCG(A1709) ; Zhejiang University ; grant of the Shanghai Key Laboratory of Intelligent Information Processing, China(IIPL-2016-003) ; grant of Australian Research Council Projects(FT-130101457 ; 61573360) ; DP-140102164 ; LP-150100671)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000422706000017
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20764
专题智能感知与计算研究中心
作者单位1.Chinese Acad Sci, Inst Intelligent Machines, Hefei 230031, Anhui, Peoples R China
2.Univ Sydney, UBTech Sydney Artificial Intelligence Inst, Fac Engn & Informat Technol, J12 Cleveland St, Darlington, NSW 2008, Australia
3.Univ Sydney, Sch Informat Technol, Fac Engn & Informat Technol, J12 Cleveland St, Darlington, NSW 2008, Australia
4.Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
5.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Gui, Jie,Liu, Tongliang,Sun, Zhenan,et al. Fast Supervised Discrete Hashing[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2018,40(2):490-496.
APA Gui, Jie,Liu, Tongliang,Sun, Zhenan,Tao, Dacheng,&Tan, Tieniu.(2018).Fast Supervised Discrete Hashing.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,40(2),490-496.
MLA Gui, Jie,et al."Fast Supervised Discrete Hashing".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 40.2(2018):490-496.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gui, Jie]的文章
[Liu, Tongliang]的文章
[Sun, Zhenan]的文章
百度学术
百度学术中相似的文章
[Gui, Jie]的文章
[Liu, Tongliang]的文章
[Sun, Zhenan]的文章
必应学术
必应学术中相似的文章
[Gui, Jie]的文章
[Liu, Tongliang]的文章
[Sun, Zhenan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。