DeepSearch: A Fast Image Search Framework for Mobile Devices
Wang, Peisong1,2; Hu, Qinghao1,2; Fang, Zhiwei1,2; Zhao, Chaoyang1,2; Cheng, Jian1,2,3
2018
发表期刊ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS
卷号14期号:1页码:6
文章类型Article
摘要Content-based image retrieval (CBIR) is one of the most important applications of computer vision. In recent years, there have been many important advances in the development of CBIR systems, especially Convolutional Neural Networks (CNNs) and other deep-learning techniques. On the other hand, current CNN-based CBIR systems suffer from high computational complexity of CNNs. This problem becomes more severe as mobile applications become more and more popular. The current practice is to deploy the entire CBIR systems on the server side while the client side only serves as an image provider. This architecture can increase the computational burden on the server side, which needs to process thousands of requests per second. Moreover, sending images have the potential of personal information leakage. As the need of mobile search expands, concerns about privacy are growing. In this article, we propose a fast image search framework, named DeepSearch, which makes complex image search based on CNNs feasible on mobile phones. To implement the huge computation of CNN models, we present a tensor Block Term Decomposition (BTD) approach as well as a nonlinear response reconstruction method to accelerate the CNNs involving in object detection and feature extraction. The extensive experiments on the ImageNet dataset and Alibaba Large-scale Image Search Challenge dataset show that the proposed accelerating approach BTD can significantly speed up the CNN models and further makes CNN-based image search practical on common smart phones.
关键词Convolutional Neural Networks Acceleration Image Retrieval Tensor Decomposition
WOS标题词Science & Technology ; Technology
DOI10.1145/3152127
关键词[WOS]HIGHER-ORDER TENSOR ; RETRIEVAL ; DECOMPOSITIONS ; SIMILARITY ; SHAPE
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61332016) ; Jiangsu Key Laboratory of Big Data Analysis Technology ; 863 program(2014AA015105)
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:000425646500006
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20896
专题模式识别国家重点实验室_图像与视频分析
通讯作者Cheng, Jian
作者单位1.Chinese Acad Sci, Inst Automat, 95 East Zhongguancun Rd, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Peisong,Hu, Qinghao,Fang, Zhiwei,et al. DeepSearch: A Fast Image Search Framework for Mobile Devices[J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,2018,14(1):6.
APA Wang, Peisong,Hu, Qinghao,Fang, Zhiwei,Zhao, Chaoyang,&Cheng, Jian.(2018).DeepSearch: A Fast Image Search Framework for Mobile Devices.ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,14(1),6.
MLA Wang, Peisong,et al."DeepSearch: A Fast Image Search Framework for Mobile Devices".ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 14.1(2018):6.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
TOMM1401-06.pdf(1203KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Peisong]的文章
[Hu, Qinghao]的文章
[Fang, Zhiwei]的文章
百度学术
百度学术中相似的文章
[Wang, Peisong]的文章
[Hu, Qinghao]的文章
[Fang, Zhiwei]的文章
必应学术
必应学术中相似的文章
[Wang, Peisong]的文章
[Hu, Qinghao]的文章
[Fang, Zhiwei]的文章
相关权益政策
暂无数据
收藏/分享
文件名: TOMM1401-06.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。