Recent advances in efficient computation of deep convolutional neural networks
Cheng, Jian1,2; Wang, Pei-song1,2; Li, Gang1,2; Hu, Qing-hao1,2; Lu, Han-qing1,2
2018
发表期刊FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING
卷号19期号:1页码:64-77
文章类型Review
摘要Deep neural networks have evolved remarkably over the past few years and they are currently the fundamental tools of many intelligent systems. At the same time, the computational complexity and resource consumption of these networks continue to increase. This poses a significant challenge to the deployment of such networks, especially in real-time applications or on resource-limited devices. Thus, network acceleration has become a hot topic within the deep learning community. As for hardware implementation of deep neural networks, a batch of accelerators based on a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC) have been proposed in recent years. In this paper, we provide a comprehensive survey of recent advances in network acceleration, compression, and accelerator design from both algorithm and hardware points of view. Specifically, we provide a thorough analysis of each of the following topics: network pruning, low-rank approximation, network quantization, teacher-student networks, compact network design, and hardware accelerators. Finally, we introduce and discuss a few possible future directions.
关键词Deep Neural Networks Acceleration Compression Hardware Accelerator
WOS标题词Science & Technology ; Technology
DOI10.1631/FITEE.1700789
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Engineering, Electrical & Electronic
WOS记录号WOS:000427742400007
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20897
专题模式识别国家重点实验室_图像与视频分析
通讯作者Cheng, Jian
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Cheng, Jian,Wang, Pei-song,Li, Gang,et al. Recent advances in efficient computation of deep convolutional neural networks[J]. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING,2018,19(1):64-77.
APA Cheng, Jian,Wang, Pei-song,Li, Gang,Hu, Qing-hao,&Lu, Han-qing.(2018).Recent advances in efficient computation of deep convolutional neural networks.FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING,19(1),64-77.
MLA Cheng, Jian,et al."Recent advances in efficient computation of deep convolutional neural networks".FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING 19.1(2018):64-77.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
FITEE_Recent advance(582KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cheng, Jian]的文章
[Wang, Pei-song]的文章
[Li, Gang]的文章
百度学术
百度学术中相似的文章
[Cheng, Jian]的文章
[Wang, Pei-song]的文章
[Li, Gang]的文章
必应学术
必应学术中相似的文章
[Cheng, Jian]的文章
[Wang, Pei-song]的文章
[Li, Gang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: FITEE_Recent advances in efficient computation of deep convolutional neural networks.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。