CASIA OpenIR  > 类脑智能研究中心  > 神经计算及脑机交互
基于PH曲线的Delta机器人轨迹规划方法
苏婷婷1,2; 张好剑1,2; 王云宽1,2; 秦晓飞3; 吴少泓1; 郑军1; 常剑章4; 王枝增5; 孙洪生4
Source Publication机器人
2018-01
Volume40Issue:1Pages:46-55
Other Abstract针对Delta并联机器人高速作业时笛卡儿空间轨迹不平滑的问题,提出一种基于毕达哥拉斯速端曲线(PH曲线)的轨迹规划方法.首先,利用PH曲线平滑竖直运动与水平运动间的直角过渡部分,确定拾放操作轨迹;然后,利用多项式运动规律对轨迹的1维曲线位移进行规划,确定运动轨迹插补点的位置;最后,以最小化拾放操作周期为目标优化PH曲线参数,得到平滑的运动轨迹.仿真分析表明,基于该方法的拾放操作具有较短的运动周期,轨迹平滑且有较平稳的运动特性;实验结果表明,Delta机器人能够以90次/分钟的速度进行抓取操作,实现了并联机器人的高速作业.; A trajectory planning method based on PH (Pythagorean Hodographs) curve is proposed to solve the problem that the trajectory of Delta parallel robot in Cartesian space is not smooth when performing high-speed operations. The pick-and-place operation trajectory is determined by applying the PH curve to smoothing the transition portion between the vertical movement and the horizontal movement. The position of the trajectory interpolation point is determined by the trajectory planning for the one-dimensional curve displacement based on the polynomial motion law. In order to minimize the movement cycle time of the pick-and-place operation, the PH curve parameters are optimized to smooth the motion trajectory. The simulation results show that the pick-and-place operation can be completed with a short period, smooth trajectory and stable motion by the proposed method. The experimental results show that the maximum pickup speed is 90 times per minute, which achieves high-speed operations of parallel robots.
Keyword并联机器人 轨迹规划 毕达哥拉斯速端曲线 参数优化
Document Type期刊论文
Identifierhttp://ir.ia.ac.cn/handle/173211/20911
Collection类脑智能研究中心_神经计算及脑机交互
Affiliation1.中国科学院自动化研究所
2.中国科学院大学
3.上海理工大学
4.渤海造船厂集团有限公司
5.葫芦岛市特种设备监督检验所
Recommended Citation
GB/T 7714
苏婷婷,张好剑,王云宽,等. 基于PH曲线的Delta机器人轨迹规划方法[J]. 机器人,2018,40(1):46-55.
APA 苏婷婷.,张好剑.,王云宽.,秦晓飞.,吴少泓.,...&孙洪生.(2018).基于PH曲线的Delta机器人轨迹规划方法.机器人,40(1),46-55.
MLA 苏婷婷,et al."基于PH曲线的Delta机器人轨迹规划方法".机器人 40.1(2018):46-55.
Files in This Item: Download All
File Name/Size DocType Version Access License
17-314_publish201710(365KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[苏婷婷]'s Articles
[张好剑]'s Articles
[王云宽]'s Articles
Baidu academic
Similar articles in Baidu academic
[苏婷婷]'s Articles
[张好剑]'s Articles
[王云宽]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[苏婷婷]'s Articles
[张好剑]'s Articles
[王云宽]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 17-314_publish2017101.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.