Global and Local Consistent Multi-view Subspace Clustering
Yanbo Fan2; Ran He(赫然)1,2,3; Baogang Hu2
2015
会议名称IAPR Asian Conference on Pattern Recognition (ACPR)
会议日期2015-11
会议地点Kuala Lumpur, Malaysia
摘要
Multi-view clustering aims to cluster data with multiple sources of information. Comparing with single view clustering, it is challenging to make use of the extra information embedded in multiple views. This paper presents a multi-view subspace clustering method (MSC-GL) by simultaneously combining both the global low-rank constraint and local cross topology preserving constraints. The global constraint maximizes the correlation between representational matrices while encouraging each of them to be low rank. The local constraints enable representational matrices under different views to share local structure information. An efficiently iterative algorithm is developed to minimize the proposed joint learning problem, and extensive experiments on five multi-view benchmarks demonstrate that the proposed model outperforms the state-of-the-art multi-view clustering methods. 
关键词Multi-view Subspace Clustering
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/20913
专题模式识别国家重点实验室_多媒体计算与图形学
作者单位1.Center for Research on Intelligent Perception and Computing, CASIA
2.National Laboratory of Pattern Recognition, CASIA
3.Center for Excellence in Brain Science and Intelligence Technology, CAS
推荐引用方式
GB/T 7714
Yanbo Fan,Ran He,Baogang Hu. Global and Local Consistent Multi-view Subspace Clustering[C],2015.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
ACPR2015.pdf(1158KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yanbo Fan]的文章
[Ran He(赫然)]的文章
[Baogang Hu]的文章
百度学术
百度学术中相似的文章
[Yanbo Fan]的文章
[Ran He(赫然)]的文章
[Baogang Hu]的文章
必应学术
必应学术中相似的文章
[Yanbo Fan]的文章
[Ran He(赫然)]的文章
[Baogang Hu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: ACPR2015.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。