Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification
Peng Zhou; Wei Shi; Jun Tian; Zhenyu Qi; Bingchen Li; Hongwei Hao; Bo Xu
2016
会议名称Annual meeting of the Association for Computational Linguistics
页码207-212
会议日期2016/8/7-2016/8/12
会议地点Berlin, Germany
摘要Relation classification is an important semantic processing task in the field of natural language processing (NLP). State-of-the-art systems still rely on lexical resources such as WordNet or NLP systems like dependency parser and named entity recognizers (NER) to get high-level features. Another challenge is that important information can appear at any position in the sentence. To tackle these problems, we propose Attention-Based Bidirectional Long Short-Term Memory Networks(Att-BLSTM) to capture the most important semantic information in a sentence. The experimental results on the SemEval-2010 relation classification task show that our method outperforms most of the existing methods, with only word vectors.
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/20945
专题数字内容技术与服务研究中心_听觉模型与认知计算
作者单位Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Peng Zhou,Wei Shi,Jun Tian,et al. Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification[C],2016:207-212.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
ACL16.pdf(553KB)会议论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Peng Zhou]的文章
[Wei Shi]的文章
[Jun Tian]的文章
百度学术
百度学术中相似的文章
[Peng Zhou]的文章
[Wei Shi]的文章
[Jun Tian]的文章
必应学术
必应学术中相似的文章
[Peng Zhou]的文章
[Wei Shi]的文章
[Jun Tian]的文章
相关权益政策
暂无数据
收藏/分享
文件名: ACL16.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。