Deep News Event Ranker Based On User Relevant Query
Kong XF(孔祥飞)1,2; Kong QC(孔庆超)1; Mao WJ(毛文吉)1,2; Tang SQ(唐少强)3; Kong QC(孔庆超)
2018-08
会议名称International Conference on Cloud Computing and Big Data Analysis
页码363-367
会议日期April 20-22, 2018
会议地点Chengdu, China
摘要       News Event Ranking(NER), which takes eventrelated news documents as the ranking unit, has been addressed in many research work and implemented in securityoriented applications(e.g. public event monitoring, mining and retrieval). Previous work solely rank news event based on event relevant information, while user relevant information equally
important for characterizing news event is totally neglected. In this paper, we depict news event with extra user comments sentiment polarity information, and address news event ranking problem by incorporating user relevant information into the input query. Given an input query, which contains event related objective aspects(e.g. actors, locations, date) and user related subjective aspects(e.g. public attention and opinion polarity), we develop a Deep News Event Ranker model to integrate objective event information and subjective user information. Firstly, a semantic similarity interaction module transforms query keywords, news document and news comments to their semantic vector representation and calculates query
ndocument similarity and queryncomment similarity. Then a Feature Extraction Based On CNNs and LSTM module extract query term importance features, query term frequency features and BM25-like relevance features for ranking. Finally, a Feature Aggregation module merges the extracted features with some auxiliary relevance features and produces a global relevance score. Experiments on a large news dataset demonstrate the effectiveness of our proposed model compared to several baseline models.
关键词News Event Ranker User Relevant Query User Related Subjective Aspects Deep News Event Ranker
收录类别EI
语种英语
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/21031
专题复杂系统管理与控制国家重点实验室_互联网大数据与信息安全
通讯作者Kong QC(孔庆超)
作者单位1.中国科学院大学
2.中科院自动化所
3.北京大学
推荐引用方式
GB/T 7714
Kong XF,Kong QC,Mao WJ,et al. Deep News Event Ranker Based On User Relevant Query[C],2018:363-367.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
dnn_ranker_icccbda.p(87KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kong XF(孔祥飞)]的文章
[Kong QC(孔庆超)]的文章
[Mao WJ(毛文吉)]的文章
百度学术
百度学术中相似的文章
[Kong XF(孔祥飞)]的文章
[Kong QC(孔庆超)]的文章
[Mao WJ(毛文吉)]的文章
必应学术
必应学术中相似的文章
[Kong XF(孔祥飞)]的文章
[Kong QC(孔庆超)]的文章
[Mao WJ(毛文吉)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: dnn_ranker_icccbda.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。