CASIA OpenIR  > 毕业生  > 博士学位论文
基于浸入与不变理论的吸气式高超声速飞行器鲁棒自适应控制方法研究
韩超
学位类型工学博士
导师易建强
2018-06
学位授予单位中国科学院研究生院
学位授予地点北京
学位专业控制理论与控制工程
关键词高超声速飞行器 有限时间控制 浸入与不变自适应 鲁棒自适应控制 复合自适应控制
摘要高超声速飞行器飞行速度快、飞行范围广,具有不可估量的军事战略意义和民用空天价值,是公认能改变世界格局的新技术。尤其是吸气式高超声速飞行器采用超燃冲压发动机可直接从大气中获取氧气,无需携带大量氧化剂,因此具备更高的有效载荷比和性价比,已成为当前航空航天领域的制高点和研究热点。控制技术作为高超声速飞行器核心技术之一,是飞行器的运动中枢,也是保证完成飞行任务的关键。然而,吸气式高超声速飞行器特有的机体/发动机一体化布局和复杂多变的飞行环境使得飞行器表现出强非线性、强耦合、强不确定性、快时变和弹性效应等复杂特性,给飞行控制系统的设计提出了严峻的挑战和苛刻的要求。本文在全面分析吸气式高超声速飞行器动力学特性的基础上,以浸入与不变自适应方法为核心,围绕控制系统设计中的关键问题提出实用的控制方法和控制系统。本文的主要工作包括以下几部分。

(1)对高超声速飞行器建模进行概述,并从控制的角度对吸气式乘波体高超声速飞行器数学模型的动力学特性进行了深入分析,总结出控制系统设计的关键问题,并介绍了浸入与不变自适应方法的原理和特点。

(2) 针对吸气式高超声速飞行器显著的气动参数不确定性等复杂动力学特性与高性能飞行控制要求之间的矛盾,提出了一种浸入与不变自适应有限时间控制方法,并基于该方法设计了高超声速飞行器自适应有限时间控制系统。控制系统设计中首先基于时标分离原则将飞行器纵向模型分解为速度子系统、高度/航迹角子系统和攻角/俯仰角速率子系统,然后分别用浸入与不变自适应有限时间控制方法设计控制器。该方法将浸入与不变自适应与非奇异终端滑模控制结合,实现了状态的有限时间跟踪和参数的稳定估计。
仿真验证了状态的快速收敛性和控制系统对不确定性的鲁棒性。

(3) 针对高超声速飞行器存在强不确定性而常规自适应控制对非参数不确定性敏感的问题,提出了一种基于σ修正的浸入与不变鲁棒自适应反步控制方法,并基于该方法设计了高超声速飞行器鲁棒自适应控制系统。该方法将σ修正引入到浸入与不变自适应框架,然后基于受限指令滤波反步法推广到高阶系统。方法从理论上保证了闭环系统在非参数不确定性下始终稳定,并且能够避免执行机构和中间状态量幅值、速率饱和对自适应律的不利影响。仿真证明了该方法的良好的轨迹跟踪性能和对非参数不确定性的强鲁棒性。

(4)针对高超声速飞行器中气动参数不仅难以准确获取还存在时变和摄动的问题,提出了一种浸入与不变复合自适应控制方法,并设计了吸气式高超声速飞行器浸入与不变复合自适应控制系统。该方法将浸入与不变自适应引入复合自适应框架,同时从跟踪误差和预测误差中提取参数信息,有效提高参数估计速率,同时避免了高增益不稳定现象。仿真证明了该方法的有效性。

总体而言,本文以浸入与不变方法为核心,深入研究吸气式高超声速飞行器控制系统设计中的难点,从控制方法和自适应方法两个方面的改进来研究高超声速飞行器鲁棒自适应控制方法,为高超声速飞行器控制系统的设计提出了积极而有意义的理论探索。
其他摘要Hypersonic vehicles are with prospect applications in both military and civilian for the advantages of ultra-high speed and wide flight coverage. And they are considered as game-changing technologies. Moreover, a branch called air-breathing hypersonic vehicle (AHV), which could obtain oxygen in the atmosphere directly as the oxidant, has better effective load percentage and better cost-effectiveness ratio to draw global researcher's focus. AHVs have become one research focus within the current aerospace community. As a key subsystem of AHVs, flight control system is an important guarantee of achieving safe flight and fulfilling complex tasks. However, due to the special integrated airframe-propulsion system configuration and complex variation of the flight condition, the dynamics of AHVs present unmanageable peculiarity, such as strong couplings, strong nonlinearity, significant uncertainties, flexible effect, and fast time-varying. All of these pose a significant challenge for the controller design of such vehicles. Based on comprehensive analysis of AHV dynamic characteristic, several key problems of AHV controller design are deeply investigated in this dissertation, using the immersion and invariance (I&I)  adaptive as the primary method. The main contributions are addressed as follows.

(1) An overview of the AHV modeling is given. The dynamic characteristics of the waverider configuration AHVs are analyzed thoroughly and several vital problems for the design of control systems are summarized, which lays the foundation for the following controller design. The principle and characteristics of the I&I adaptive method are introduced.

(2) For the contradiction between the complex AHVs dynamic characteristics and high-performance flight control requirements, an I&I adaptive finite-time control method is proposed for AHVs control system design. In the AHV adaptive finite-time control system design, the high-order nonlinear AHV model is first decomposed into velocity, altitude-flight path angle, and angle of attack-pitch rate subsystems. Then I&I adaptive finite-time based controllers are designed for each subsystem. The method is a combination of the  I&I adaptive method and nonsingular terminal sliding mode control (TSMC), which can be used to achieve states finite-time stabilization and parameter adaptive laws asymptotic convergence.  Simulation results show the effectiveness of the proposed scheme.

(3) For the problem that AHVs model has strong uncertainties but conventional adaptive control methods are sensitive to non-parametric uncertainty, an I&I robust adaptive backstepping method with σ-modification is proposed for AHVs control system design. The method integrates σ-modification into I&I adaptive method and can ensure the stability of high-order nonlinear systems under the circumstance of both parametric and non-parametric uncertainties. The effectiveness and robustness of the proposed scheme are demonstrated by numerical simulations.

(4) For the problem that aerodynamic parameters are time-varying and their exact values are not constantly available, an I&I composite adaptive method is proposed for AHVs control system design. The method is an integration of  I&I adaptive and composite adaption so it could extract parameter information from both tracking error and prediction error, which can lead to quick adaptation and avoid high-gain instability of adaptive law. Simulation results show the effectiveness of the designed control system.

Conclusively, based on the I&I adaptive methodology, this dissertation presents a thorough research on several key problems of AHV controller design and makes a promising theory exploration for the breakthrough of key technologies of control system design.
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/21042
专题毕业生_博士学位论文
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
韩超. 基于浸入与不变理论的吸气式高超声速飞行器鲁棒自适应控制方法研究[D]. 北京. 中国科学院研究生院,2018.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
毕业论文-韩超.pdf(4000KB)学位论文 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[韩超]的文章
百度学术
百度学术中相似的文章
[韩超]的文章
必应学术
必应学术中相似的文章
[韩超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。