CASIA OpenIR  > 智能感知与计算研究中心
Robust Semi-supervised Learning Algorithm based on Maximum Correntropy Criterion
Nanhai Yang; Mingming Huang; Ran He(赫然); Xiukun Wang
2012
发表期刊Chinese Journal of Software
卷号23期号:2页码:279-288
摘要his paper analyzes the problem of sensitivity to noise in the mean square criterion of Gaussian- Laplacian regularized (GLR) algorithm. A robust semi-supervised learning algorithm based on maximum correntropy criterion (MCC), called GLR-MCC, is proposed to improve the robustness of GLR along with its convergence analysis. The half quadratic optimization technique is used to simplify the correntropy optimization problem to a standard semi-supervised problem in each iteration. Experimental results on typical machine learning data sets show that the proposed GLR-MCC can effectively improve the robustness of mislabeling noise and occlusion as compared with related semi-supervised learning algorithms.
关键词Semi-supervised Learning Gaussian-laplacian Regularized Correntropy Robust Half Quadratic Optimization
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21165
专题智能感知与计算研究中心
推荐引用方式
GB/T 7714
Nanhai Yang,Mingming Huang,Ran He,et al. Robust Semi-supervised Learning Algorithm based on Maximum Correntropy Criterion[J]. Chinese Journal of Software,2012,23(2):279-288.
APA Nanhai Yang,Mingming Huang,Ran He,&Xiukun Wang.(2012).Robust Semi-supervised Learning Algorithm based on Maximum Correntropy Criterion.Chinese Journal of Software,23(2),279-288.
MLA Nanhai Yang,et al."Robust Semi-supervised Learning Algorithm based on Maximum Correntropy Criterion".Chinese Journal of Software 23.2(2012):279-288.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nanhai Yang]的文章
[Mingming Huang]的文章
[Ran He(赫然)]的文章
百度学术
百度学术中相似的文章
[Nanhai Yang]的文章
[Mingming Huang]的文章
[Ran He(赫然)]的文章
必应学术
必应学术中相似的文章
[Nanhai Yang]的文章
[Mingming Huang]的文章
[Ran He(赫然)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。