CASIA OpenIR  > 类脑智能研究中心
Efficient auto-refocusing for light field camera
Chi Zhang; Guangqi Hou; Zhaoxiang Zhang; Zhenan Sun; Tieniu Tan
2018
发表期刊Pattern Recognition
期号81页码:176-189
摘要Computer vision tasks prefer the images focused at the related objects for a better performance, which requests a Auto-ReFocusing (ARF) function for using light field cameras. However, the current ARF schemes are time-consuming in practice, because they commonly need to render an image sequence for finding the optimally refocused frame. This paper presents an efficient ARF solution for light-field cameras based on modeling the refocusing point spread function (R-PSF). The R-PSF holds a simple linear relationship between refocusing depth and defocus blurriness. Such a linear relationship enables to deter- mine the two candidates of the optimally refocused frame from only one initial refocused image. Because our method only involves three times of refocusing rendering for finding the optimally refocused frame, it is much more efficient than the current “rendering and selection”solutions which need to render a large number of refocused images.
关键词Auto-refocusing Detection-based Focusing Blurriness Measure Light-field Photography
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21581
专题类脑智能研究中心
推荐引用方式
GB/T 7714
Chi Zhang,Guangqi Hou,Zhaoxiang Zhang,et al. Efficient auto-refocusing for light field camera[J]. Pattern Recognition,2018(81):176-189.
APA Chi Zhang,Guangqi Hou,Zhaoxiang Zhang,Zhenan Sun,&Tieniu Tan.(2018).Efficient auto-refocusing for light field camera.Pattern Recognition(81),176-189.
MLA Chi Zhang,et al."Efficient auto-refocusing for light field camera".Pattern Recognition .81(2018):176-189.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
PR2018.pdf(4571KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chi Zhang]的文章
[Guangqi Hou]的文章
[Zhaoxiang Zhang]的文章
百度学术
百度学术中相似的文章
[Chi Zhang]的文章
[Guangqi Hou]的文章
[Zhaoxiang Zhang]的文章
必应学术
必应学术中相似的文章
[Chi Zhang]的文章
[Guangqi Hou]的文章
[Zhaoxiang Zhang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: PR2018.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。