CASIA OpenIR  > 类脑智能研究中心
Special Issue of BICS 2016
Liu, Cheng-Lin1; Hussain, Amir2; Luo, Bin3; Tan, Kay Chen4; Zeng, Yi1; Zhang, Zhaoxiang1
2018-04-01
发表期刊COGNITIVE COMPUTATION
卷号10期号:2页码:282-283
文章类型Editorial Material
摘要Brain-inspired cognitive models and algorithms are important components driving artificial intelligence (AI). Deep neural networks are currently considered the most effective models to yield high perception and inference performance by learning from big data. However they manifest inferior generalization, robustness, interpretability, and adaptability when compared to the human brain. Despite neural circuits and cognition mechanisms of the brain having many unknowns, they continue to inspire AI in different ways. The International Conference on Brain Inspired Cognitive System (BICS) has been organized since 2004 to stimulate interdisciplinary research and exchanges in brain-inspired cognitive systems and applications in diverse fields. The 8th International Conference on Brain Inspired Cognitive System (BICS 2016) was held in Beijing, China, November 28–30, 2016. This special issue aims to report new advances since BICS 2016, by including expanded versions of selected conference papers and also new contributions.
Until April 20, 2017, the special issue received 18 submissions, most of which were expanded versions of BICS 2016 conference papers, along with a few new submissions. Following a rigorous peer review process, nine papers were accepted for publication in this special issue. The nine papers present contributions in brain information processing, braininspired cognitive models, and algorithms for decision, learning, vision, and applications. In BAnatomical Pattern Analysis for Decoding Visual Stimuli in Human Brains,^ Yousefnezhad and Zhang propose Anatomical Pattern Analysis (APA) for decoding visual stimuli in the human brain. This framework develops a novel anatomical feature extraction method and a new imbalance AdaBoost algorithm for binary classification. Further, it utilizes an Error-Correcting Output Codes (ECOC) method for multiclass prediction. APA can automatically detect active regions for each category of the visual stimuli. Moreover, it enables us to combine homogeneous datasets for applying advanced classification. Experiments on four visual categories in fMRI data demonstrate the effectiveness of the proposed method.
关键词Bics Brain-inspired Artificial Intelligence Deep Neural Networks
WOS标题词Science & Technology ; Technology ; Life Sciences & Biomedicine
DOI10.1007/s12559-018-9551-3
收录类别SCI
语种英语
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:000430190600008
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21593
专题类脑智能研究中心
作者单位1.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
2.Univ Stirling, Stirling, Scotland
3.Anhui Univ, Hefei, Anhui, Peoples R China
4.City Univ Hong Kong, Kowloon Tong, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Liu, Cheng-Lin,Hussain, Amir,Luo, Bin,et al. Special Issue of BICS 2016[J]. COGNITIVE COMPUTATION,2018,10(2):282-283.
APA Liu, Cheng-Lin,Hussain, Amir,Luo, Bin,Tan, Kay Chen,Zeng, Yi,&Zhang, Zhaoxiang.(2018).Special Issue of BICS 2016.COGNITIVE COMPUTATION,10(2),282-283.
MLA Liu, Cheng-Lin,et al."Special Issue of BICS 2016".COGNITIVE COMPUTATION 10.2(2018):282-283.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Cheng-Lin]的文章
[Hussain, Amir]的文章
[Luo, Bin]的文章
百度学术
百度学术中相似的文章
[Liu, Cheng-Lin]的文章
[Hussain, Amir]的文章
[Luo, Bin]的文章
必应学术
必应学术中相似的文章
[Liu, Cheng-Lin]的文章
[Hussain, Amir]的文章
[Luo, Bin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。