Defect Detection for Mobile Phone Cover Glass using Deep Neural Networks
Zhang ZT(张正涛); Zhang ZT(张正涛)
2018
发表期刊Jounral of Precision Engineering and Manufacturing
卷号19期号:6页码:801-810
摘要
The emergency of surface defect would significantly influence the quality of MPCG
(Mobile Phone Cover Glass). Therefore, efficient defect detection is highly required in
the manufacturing process. Focusing on the problem, an automatic detection system is
developed in this paper. The system adopts backlight imaging technology to improve
the signal to noise ration and imaging effect. Then, a modified segmentation method is
presented for defect extraction and measurement based on deep neural networks. In
the method, a novel data generation process is provided, with which the drawback that
huge amount of data is required for training deep structured networks can be
overcome. Finally, experiments are well conducted to verify that satisfactory
performance is achieved with the proposed method.
关键词Mobile Phone Cover Glass Defect Inspection Deep Learning Sementic Segmentation
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21666
专题精密感知与控制研究中心_人工智能与机器学习
通讯作者Zhang ZT(张正涛)
推荐引用方式
GB/T 7714
Zhang ZT,Zhang ZT. Defect Detection for Mobile Phone Cover Glass using Deep Neural Networks[J]. Jounral of Precision Engineering and Manufacturing,2018,19(6):801-810.
APA Zhang ZT,&张正涛.(2018).Defect Detection for Mobile Phone Cover Glass using Deep Neural Networks.Jounral of Precision Engineering and Manufacturing,19(6),801-810.
MLA Zhang ZT,et al."Defect Detection for Mobile Phone Cover Glass using Deep Neural Networks".Jounral of Precision Engineering and Manufacturing 19.6(2018):801-810.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
袁智超-JAMT-D-17-03342.(1821KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang ZT(张正涛)]的文章
[张正涛]的文章
百度学术
百度学术中相似的文章
[Zhang ZT(张正涛)]的文章
[张正涛]的文章
必应学术
必应学术中相似的文章
[Zhang ZT(张正涛)]的文章
[张正涛]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 袁智超-JAMT-D-17-03342.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。