Forearm Motion Recognition With Noncontact Capacitive Sensing
Zheng, Enhao1; Mai, Jingeng2,3; Liu, Yuxiang2; Wang, Qining2,3
2018-07-27
发表期刊FRONTIERS IN NEUROROBOTICS
卷号12期号:12页码:1-13
文章类型Article
摘要This study presents a noncontact capacitive sensing method for forearm motion recognition. A method is proposed to record upper limb motion information from muscle contractions without contact with human skin, compensating for the limitations of existing sEMG-based methods. The sensing front-ends are designed based on human forearm shapes, and the forearm limb shape changes caused by muscle contractions will be represented by capacitance signals. After implementation of the capacitive sensing system, experiments on healthy subjects are conducted to evaluate the effectiveness. Nine motion patterns combined with 16 motion transitions are investigated on seven participants. We also designed an automatic data labeling method based on inertial signals from the measured hand, which greatly accelerated the training procedure. With the capacitive sensing system and the designed recognition algorithm, the method produced an average recognition of over 92%. Correct decisions could be made with approximately a 347-ms delay from the relaxed state to the time point of motion initiation. The confounding factors that affect the performances are also analyzed, including the sliding window length, the motion types and the external disturbances. We found the average accuracy increased to 98.7% when five motion patterns were recognized. The results of the study proved the feasibility and revealed the problems of the noncontact capacitive sensing approach on upper-limb motion sensing and recognition. Future efforts in this direction could be worthwhile for achieving more promising outcomes.
关键词Noncontact Capacitive Sensing Upper-limb Motion Recognition Human-machine Interface Automatic Data Labeling Robot Learning From Humans
WOS标题词Science & Technology ; Technology ; Life Sciences & Biomedicine
DOI10.3389/fnbot.2018.00047
关键词[WOS]PATTERN-RECOGNITION ; ARM ; ELECTROMYOGRAPHY ; CONTRACTION ; AMPUTEES ; ROBUST
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61703400 ; Beijing Natural Science Foundation(L172052) ; 91648207)
WOS研究方向Computer Science ; Robotics ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Robotics ; Neurosciences
WOS记录号WOS:000440030700001
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21727
专题复杂系统管理与控制国家重点实验室_机器人理论与应用
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China
2.Peking Univ, Coll Engn, Robot Res Grp, Beijing, Peoples R China
3.Peking Univ, BIC ESAT, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zheng, Enhao,Mai, Jingeng,Liu, Yuxiang,et al. Forearm Motion Recognition With Noncontact Capacitive Sensing[J]. FRONTIERS IN NEUROROBOTICS,2018,12(12):1-13.
APA Zheng, Enhao,Mai, Jingeng,Liu, Yuxiang,&Wang, Qining.(2018).Forearm Motion Recognition With Noncontact Capacitive Sensing.FRONTIERS IN NEUROROBOTICS,12(12),1-13.
MLA Zheng, Enhao,et al."Forearm Motion Recognition With Noncontact Capacitive Sensing".FRONTIERS IN NEUROROBOTICS 12.12(2018):1-13.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
fnbot-12-00047.pdf(2273KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zheng, Enhao]的文章
[Mai, Jingeng]的文章
[Liu, Yuxiang]的文章
百度学术
百度学术中相似的文章
[Zheng, Enhao]的文章
[Mai, Jingeng]的文章
[Liu, Yuxiang]的文章
必应学术
必应学术中相似的文章
[Zheng, Enhao]的文章
[Mai, Jingeng]的文章
[Liu, Yuxiang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: fnbot-12-00047.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。