Efficient Confidence-Based Hierarchical Stereo Disparity Upsampling for Noisy Inputs
Xiang-bing Meng; Mei Zhang; Zhao-xing Zhang; Rong Wang; Zheng Geng; Fei-Yue Wang
2019
发表期刊IEEE Access
卷号0期号:0页码:0
摘要Disparity upsampling techniques aim to restore high-resolution disparity maps from lowresolution disparity inputs. These inputs must be of high quality and are often obtained via complicated passive or active 3D reconstruction methods. Each pixel in the input disparity maps guides the disparity assignment in the upsampling process. The quality of the upsampled results will decrease if the initial disparity inputs are noisy, as the upsampled results are closely related to the initial inputs.We herein propose a hierarchical confidence-based upsampling framework that can be used to obtain relatively high quality upsampled results even under the noisy inputs. Specifically designed confidence measuring schemes are
employed in our upsampling process, allowing the disparity assignment of only high-confidence pixels. For an effective depth quality evaluation, we present a novel classification of the confidence according to depth- and texture-related information and develop a confidence examination method with improved precision by combining multiple depth confidence evaluation methods. Our hierarchical pipeline contains 3 steps: confidence-based upsampling, confidence-based fine-tuning and confidence-based optimization. The upsampling combines multichannel information. Fine-tuning is carried out using the stereo texture information. Optimization is conducted utilizing the Markov random field method. All these proposed methods work together to suppress the low-confidence pixels and propagate the high-confidence pixels in the upsampling process. The cumulative error distribution is further analyzed, revealing the effectiveness of our confidence evaluation. Extensive comparison experiments are also performed using both the ground truth and stereo matching disparity maps as inputs to demonstrate the advantage of our framework over state-of-the-art upsampling methods.
其他摘要
关键词Disparity Upsampling Confidence Evaluation Noise Hierarchical Structure Multichannel Upsampling
收录类别SCI
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21735
专题复杂系统管理与控制国家重点实验室_复杂系统研究
通讯作者Mei Zhang
推荐引用方式
GB/T 7714
Xiang-bing Meng,Mei Zhang,Zhao-xing Zhang,et al. Efficient Confidence-Based Hierarchical Stereo Disparity Upsampling for Noisy Inputs[J]. IEEE Access,2019,0(0):0.
APA Xiang-bing Meng,Mei Zhang,Zhao-xing Zhang,Rong Wang,Zheng Geng,&Fei-Yue Wang.(2019).Efficient Confidence-Based Hierarchical Stereo Disparity Upsampling for Noisy Inputs.IEEE Access,0(0),0.
MLA Xiang-bing Meng,et al."Efficient Confidence-Based Hierarchical Stereo Disparity Upsampling for Noisy Inputs".IEEE Access 0.0(2019):0.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
FINAL Article_mxb.pd(3168KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xiang-bing Meng]的文章
[Mei Zhang]的文章
[Zhao-xing Zhang]的文章
百度学术
百度学术中相似的文章
[Xiang-bing Meng]的文章
[Mei Zhang]的文章
[Zhao-xing Zhang]的文章
必应学术
必应学术中相似的文章
[Xiang-bing Meng]的文章
[Mei Zhang]的文章
[Zhao-xing Zhang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: FINAL Article_mxb.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。