A Partition and Interaction Combined Model for Social Event Popularity Prediction
Guandan Chen; Qingchao Kong; Wenji Mao; Daniel Zeng
2018
会议名称IEEE Intelligence and Security Informatics (ISI) 2018
会议日期2018.11.08-2018.11.10
会议地点Miami, FL, USA
摘要Social media platforms make the spread of social event information quicker and more convenient. Some of these social events may become hot topics, which highlights the importance of event popularity prediction in public management, decision making and other security related applications. Due to the complexity of social event itself, it has two unique characteristics which most previous popularity prediction work has ignored: (1) the discussion of an event itself may consist of several components, e.g. different sub-events, different stances or different user communities; (2) the popularity of an event can be influenced by other related events. To address its unique characteristics, we propose an event popularity prediction model combining partition and interaction. We employ reinforcement learning to automatically partition an event into components and recognize related events. Then we predict event popularity by modeling component information and interactions between related events. Experimental results on a real world dataset show that our proposed model can outperform the competitive baseline methods.
关键词Popularity Prediction Information Cascade Reinforcement Learning
收录类别EI
语种英语
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/21798
专题复杂系统管理与控制国家重点实验室_互联网大数据与信息安全
作者单位1.The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, China
2.The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, China
3.The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, China
4.The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, China
推荐引用方式
GB/T 7714
Guandan Chen,Qingchao Kong,Wenji Mao,et al. A Partition and Interaction Combined Model for Social Event Popularity Prediction[C],2018.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
ISI_2018_paper_87.pd(1095KB)会议论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guandan Chen]的文章
[Qingchao Kong]的文章
[Wenji Mao]的文章
百度学术
百度学术中相似的文章
[Guandan Chen]的文章
[Qingchao Kong]的文章
[Wenji Mao]的文章
必应学术
必应学术中相似的文章
[Guandan Chen]的文章
[Qingchao Kong]的文章
[Wenji Mao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: ISI_2018_paper_87.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。