CASIA OpenIR  > 类脑智能研究中心
Learning With Coefficient-Based Regularized Regression on Markov Resampling
Li, Luoqing1; Li, Weifu1; Zou, Bin1; Wang, Yulong2,3; Tang, Yuan Yan3; Han, Hua4
2018-09-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
卷号29期号:9页码:4166-4176
文章类型Article
摘要Big data research has become a globally hot topic in recent years. One of the core problems in big data learning is how to extract effective information from the huge data. In this paper, we propose a Markov resampling algorithm to draw useful samples for handling coefficient-based regularized regression (CBRR) problem. The proposed Markov resampling algorithm is a selective sampling method, which can automatically select uniformly ergodic Markov chain (u.e.M.c.) samples according to transition probabilities. Based on u.e.M.c. samples, we analyze the theoretical performance of CBRR algorithm and generalize the existing results on independent and identically distributed observations. To be specific, when the kernel is infinitely differentiable, the learning rate depending on the sample size m can be arbitrarily close to O(m(-1)) under a mild regularity condition on the regression function. The good generalization ability of the proposed method is validated by experiments on simulated and real data sets.
关键词Coefficient-based Regularized Regression (Cbrr) Learning Rate Markov Resampling Uniformly Ergodic Markov Chain (U.e.m.c.)
WOS标题词Science & Technology ; Technology
DOI10.1109/TNNLS.2017.2757140
关键词[WOS]NEURAL-NETWORKS ; GENERALIZATION PERFORMANCE ; ERROR ANALYSIS ; CLASSIFICATION ; KERNELS ; CHAINS ; OPTIMIZATION ; ALGORITHMS ; TOKAMAK ; MODELS
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(11771130 ; Strategic Priority Research Program of the CAS(XDB02060000) ; University of Macau(MYRG205(Y1-L4)-FST11-TYY ; Science and Technology Development Fund (FDCT) of Macau(100-2012-A3 ; 11371007 ; MYRG187(Y1-L3)-FST11-TYY ; 026-2013-A) ; 61702057 ; RDG009/FST-TYY/2012) ; 61273244)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000443083700019
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21825
专题类脑智能研究中心
作者单位1.Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Hubei, Peoples R China
2.Chengdu Univ, Sch Informat Sci & Engn, Chengdu 610106, Sichuan, Peoples R China
3.Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
4.Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Luoqing,Li, Weifu,Zou, Bin,et al. Learning With Coefficient-Based Regularized Regression on Markov Resampling[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,29(9):4166-4176.
APA Li, Luoqing,Li, Weifu,Zou, Bin,Wang, Yulong,Tang, Yuan Yan,&Han, Hua.(2018).Learning With Coefficient-Based Regularized Regression on Markov Resampling.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,29(9),4166-4176.
MLA Li, Luoqing,et al."Learning With Coefficient-Based Regularized Regression on Markov Resampling".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 29.9(2018):4166-4176.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Luoqing]的文章
[Li, Weifu]的文章
[Zou, Bin]的文章
百度学术
百度学术中相似的文章
[Li, Luoqing]的文章
[Li, Weifu]的文章
[Zou, Bin]的文章
必应学术
必应学术中相似的文章
[Li, Luoqing]的文章
[Li, Weifu]的文章
[Zou, Bin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。