CASIA OpenIR  > 智能感知与计算研究中心
Multi-Task GANs for View-Specific Feature Learning in Gait Recognition
He, Yiwei1,2; Zhang, Junping1,2; Shan, Hongming3; Wang, Liang4
2019
发表期刊IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
卷号14期号:1页码:102-113
文章类型Article
摘要Gait recognition is of great importance in the fields of surveillance and forensics to identify human beings since gait is the unique biometric feature that can be perceived efficiently at a distance. However, the accuracy of gait recognition to some extent suffers from both the variation of view angles and the deficient gait templates. On one hand, the existing cross-view methods focus on transforming gait templates among different views, which may accumulate the transformation error in a large variation of view angles. On the other hand, a commonly used gait energy image template loses temporal information of a gait sequence. To address these problems, this paper proposes multi-task generative adversarial networks (MGANs) for learning view-specific feature representations. In order to preserve more temporal information, we also propose a new multi-channel gait template, called period energy image (PEI). Based on the assumption of view angle manifold, the MGANs can leverage adversarial training to extract more discriminative features from gait sequences. Experiments on OU-ISIR, CASIA-B, and USF benchmark data sets indicate that compared with several recently published approaches, PEI + MGANs achieves competitive performance and is more interpretable to cross-view gait recognition.
关键词Gait Recognition Cross-view Generative Adversarial Networks Surveillance
WOS标题词Science & Technology ; Technology
DOI10.1109/TIFS.2018.2844819
关键词[WOS]HUMAN IDENTIFICATION ; PERFORMANCE
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61673118) ; Shanghai Pujiang Program(16PJD009)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000440782400002
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21841
专题智能感知与计算研究中心
作者单位1.Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
2.Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
3.Rensselaer Polytech Inst, Dept Biomed Engn, Ctr Biotechnol & Interdisciplinary Studies, Troy, NY 12180 USA
4.Chinese Acad Sci, Inst Automat, Ctr Res Intelligent Percept & Comp, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
He, Yiwei,Zhang, Junping,Shan, Hongming,et al. Multi-Task GANs for View-Specific Feature Learning in Gait Recognition[J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,2019,14(1):102-113.
APA He, Yiwei,Zhang, Junping,Shan, Hongming,&Wang, Liang.(2019).Multi-Task GANs for View-Specific Feature Learning in Gait Recognition.IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,14(1),102-113.
MLA He, Yiwei,et al."Multi-Task GANs for View-Specific Feature Learning in Gait Recognition".IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 14.1(2019):102-113.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Yiwei]的文章
[Zhang, Junping]的文章
[Shan, Hongming]的文章
百度学术
百度学术中相似的文章
[He, Yiwei]的文章
[Zhang, Junping]的文章
[Shan, Hongming]的文章
必应学术
必应学术中相似的文章
[He, Yiwei]的文章
[Zhang, Junping]的文章
[Shan, Hongming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。