CASIA OpenIR  > 智能感知与计算研究中心
DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification
Zhang, Shu1; He, Ran1,2; Sun, Zhenan1,2; Tan, Tieniu1,2
2018-03-01
发表期刊IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
卷号13期号:3页码:637-647
文章类型Article
摘要MeshFace photos have been widely used in many Chinese business organizations to protect ID face photos from being misused. The occlusions incurred by random meshes severely degenerate the performance of face verification systems, which raises the MeshFace verification problem between MeshFace and daily photos. Previous methods cast this problem as a typical low-level vision problem, i.e., blind inpainting. They recover perceptually pleasing clear ID photos from MeshFaces by enforcing pixel level similarity between the recovered ID images and the ground-truth clear ID images and then perform face verification on them. Essentially, face verification is conducted on a compact feature space rather than the image pixel space. Therefore, this paper argues that pixel level similarity and feature level similarity jointly offer the key to improve the verification performance. Based on this insight, we offer a novel feature oriented blind face inpainting framework. Specifically, we implement this by establishing a novel DeMeshNet, which consists of three parts. The first part addresses blind inpainting of the MeshFaces by implicitly exploiting extra supervision from the occlusion position to enforce pixel level similarity. The second part explicitly enforces a feature level similarity in the compact feature space, which can explore informative supervision from the feature space to produce better inpainting results for verification. The last part copes with face alignment within the net via a customized spatial transformer module when extracting deep facial features. All three parts are implemented within an end-to-end network that facilitates efficient optimization. Extensive experiments on two MeshFace data sets demonstrate the effectiveness of the proposed DeMeshNet as well as the insight of this paper.
关键词Meshface Face Verification Blind Inpainting Deep Learning Demeshnet Spatial Transformer
WOS标题词Science & Technology ; Technology
DOI10.1109/TIFS.2017.2763119
关键词[WOS]REMOVAL ; RAIN
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61622310 ; Beijing Municipal Science and Technology Commission(Z161100000216144) ; State Key Development Program(2016YFB1001001) ; 61473289)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000418723000007
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21928
专题智能感知与计算研究中心
作者单位1.Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Shu,He, Ran,Sun, Zhenan,et al. DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification[J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,2018,13(3):637-647.
APA Zhang, Shu,He, Ran,Sun, Zhenan,&Tan, Tieniu.(2018).DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification.IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,13(3),637-647.
MLA Zhang, Shu,et al."DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification".IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13.3(2018):637-647.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Shu]的文章
[He, Ran]的文章
[Sun, Zhenan]的文章
百度学术
百度学术中相似的文章
[Zhang, Shu]的文章
[He, Ran]的文章
[Sun, Zhenan]的文章
必应学术
必应学术中相似的文章
[Zhang, Shu]的文章
[He, Ran]的文章
[Sun, Zhenan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。