A Novel Manifold Regularized Online Semi-supervised Learning Model
Ding, Shuguang1,2; Xi, Xuanyang3; Liu, Zhiyong3,4,5; Qiao, Hong3,4,5; Zhang, Bo1,2
2018-02-01
发表期刊COGNITIVE COMPUTATION
卷号10期号:1页码:49-61
文章类型Article
摘要In the process of human learning, training samples are often obtained successively. Therefore, many human learning tasks exhibit online and semi-supervision characteristics, that is, the observations arrive in sequence and the corresponding labels are presented very sporadically. In this paper, we propose a novel manifold regularized model in a reproducing kernel Hilbert space (RKHS) to solve the online semi-supervised learning ((OSL)-L-2) problems. The proposed algorithm, named Model-Based Online Manifold Regularization (MOMR), is derived by solving a constrained optimization problem. Different from the stochastic gradient algorithm used for solving the online version of the primal problem of Laplacian support vector machine (LapSVM), the proposed algorithm can obtain an exact solution iteratively by solving its Lagrange dual problem. Meanwhile, to improve the computational efficiency, a fast algorithm is presented by introducing an approximate technique to compute the derivative of the manifold term in the proposed model. Furthermore, several buffering strategies are introduced to improve the scalability of the proposed algorithms and theoretical results show the reliability of the proposed algorithms. Finally, the proposed algorithms are experimentally shown to have a comparable performance to the standard batch manifold regularization algorithm.
关键词Human Learning Manifold Regularization Online Semi-supervised Learning Lagrange Dual Problem
WOS标题词Science & Technology ; Technology ; Life Sciences & Biomedicine
DOI10.1007/s12559-017-9489-x
关键词[WOS]FRAMEWORK ; KERNELS
收录类别SCI
语种英语
项目资助者NSFC(61375005 ; MOST(2015BAK35B00 ; Guangdong Science and Technology Department(2016B090910001) ; BNSF(4174107) ; U1613213 ; 2015BAK35B01) ; 61210009 ; 61627808 ; 61603389 ; 61602483)
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:000426075500006
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21974
专题复杂系统管理与控制国家重点实验室_机器人理论与应用
作者单位1.Chinese Acad Sci, LSEC, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
4.Chinese Acad Sci, CEBSIT, Shanghai 200031, Peoples R China
5.Chinese Acad Sci, Cloud Comp Ctr, Dongguan 523808, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Ding, Shuguang,Xi, Xuanyang,Liu, Zhiyong,et al. A Novel Manifold Regularized Online Semi-supervised Learning Model[J]. COGNITIVE COMPUTATION,2018,10(1):49-61.
APA Ding, Shuguang,Xi, Xuanyang,Liu, Zhiyong,Qiao, Hong,&Zhang, Bo.(2018).A Novel Manifold Regularized Online Semi-supervised Learning Model.COGNITIVE COMPUTATION,10(1),49-61.
MLA Ding, Shuguang,et al."A Novel Manifold Regularized Online Semi-supervised Learning Model".COGNITIVE COMPUTATION 10.1(2018):49-61.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ding, Shuguang]的文章
[Xi, Xuanyang]的文章
[Liu, Zhiyong]的文章
百度学术
百度学术中相似的文章
[Ding, Shuguang]的文章
[Xi, Xuanyang]的文章
[Liu, Zhiyong]的文章
必应学术
必应学术中相似的文章
[Ding, Shuguang]的文章
[Xi, Xuanyang]的文章
[Liu, Zhiyong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。