Capturing Car-Following Behaviors by Deep Learning
Wang, Xiao1; Jiang, Rui2; Li, Li3; Lin, Yilun4; Zheng, Xinhu5; Wang, Fei-Yue4,6
2018-03-01
发表期刊IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
卷号19期号:3页码:910-920
文章类型Article
摘要In this paper, we propose a deep neural network-based car-following model that has two distinctive properties. First, unlike most existing car-following models that take only the instantaneous velocity, velocity difference, and position difference as inputs, this new model takes the velocities, velocity differences, and position differences that were observed in the last few time intervals as inputs. That is, we assume that drivers' actions are temporally dependent in this model and try to embed prediction capability or memory effect of human drivers in a natural and efficient way. Second, this car-following model is built in a data-driven way, in which we reduce human interference to the minimum degree. Specially, we use recently developing deep neural networks rather than conventional neural networks to establish the model, since deep learning technique provides us more flexibility and accuracy to describe complicated human actions. Tests on empirical trajectory records show that this deep neural network-based car-following model yield significantly higher simulation accuracy than existing car-following models. All these findings provide a novel way to study traffic flow theory and traffic simulations.
关键词Microscopic Car-following Model Deep Learning Recurrent Neural Network (Rnn) Gated Recurrent Unit (Gru) Neural Networks
WOS标题词Science & Technology ; Technology
DOI10.1109/TITS.2017.2706963
关键词[WOS]INTELLIGENT TRANSPORTATION SYSTEMS ; TRAFFIC FLOW MODELS ; SHORT-TERM-MEMORY ; NEURAL-NETWORKS ; ARCHITECTURES ; CALIBRATION ; STABILITY ; ALGORITHM ; FRAMEWORK ; DESIGN
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(91520301 ; National Key R&D Program in China(2016YFB0100906) ; 71621001)
WOS研究方向Engineering ; Transportation
WOS类目Engineering, Civil ; Engineering, Electrical & Electronic ; Transportation Science & Technology
WOS记录号WOS:000427222600021
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21981
专题复杂系统管理与控制国家重点实验室_先进控制与自动化
作者单位1.Xi An Jiao Tong Univ, Dept Comp Sci & Technol, Xian 710049, Shaanxi, Peoples R China
2.Beijing Jiaotong Univ, Sch Traff & Transportat, Beijing 100044, Peoples R China
3.Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
4.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100080, Peoples R China
5.Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55414 USA
6.Xi An Jiao Tong Univ, Sch Software Engn, Xian 710049, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Wang, Xiao,Jiang, Rui,Li, Li,et al. Capturing Car-Following Behaviors by Deep Learning[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2018,19(3):910-920.
APA Wang, Xiao,Jiang, Rui,Li, Li,Lin, Yilun,Zheng, Xinhu,&Wang, Fei-Yue.(2018).Capturing Car-Following Behaviors by Deep Learning.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,19(3),910-920.
MLA Wang, Xiao,et al."Capturing Car-Following Behaviors by Deep Learning".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 19.3(2018):910-920.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Xiao]的文章
[Jiang, Rui]的文章
[Li, Li]的文章
百度学术
百度学术中相似的文章
[Wang, Xiao]的文章
[Jiang, Rui]的文章
[Li, Li]的文章
必应学术
必应学术中相似的文章
[Wang, Xiao]的文章
[Jiang, Rui]的文章
[Li, Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。