Process Modeling and Monitoring With Incomplete Data Based on Robust Probabilistic Partial Least Square Method
Li, Qinghua1; Pan, Feng1; Zhao, Zhonggai1; Yu, Junzhi2
2018
发表期刊IEEE ACCESS
卷号6页码:10160-10168
文章类型Article
摘要In real industrial processes, both outliers and missing data are very common. Owing to the assumption that the data sampled from a normal process follow the Gaussian distribution, the regular data-driven process monitoring methods, such as the probabilistic partial least square (PPLS) method and the probabilistic principal component analysis method, are sensitive to outliers. By introducing heavy-tailed t distribution instead of Gaussian distribution to capture the distribution of normal data, the robust data-driven method can significantly reduce the influence of outliers on the development of the model. To reduce the influence of missing data, this paper proposes a process modeling and monitoring method with incomplete data based on the robust PPLS method. In the proposed method, to use more useful information in modeling, incomplete data along with complete data are employed in the parameter estimation using the maximum likelihood method; according to the robust PPLS model and the Bayes' rule, the distributions of latent variables and missing data are derived, and subsequently, the expectation-maximization algorithm is used to achieve the parameter estimation. In addition, based on the conditional distribution of missing data, two monitoring indices are developed to evaluate the deviation of latent variables and residuals. A simulation case illustrates the application of the proposed method, and the results of application demonstrate its efficacy.
关键词Process Modeling Process Monitoring Robust Ppls Method Missing Data
WOS标题词Science & Technology ; Technology
DOI10.1109/ACCESS.2018.2810079
关键词[WOS]MISSING DATA ; LATENT STRUCTURES ; PCA ; PREDICTION ; REGRESSION ; PROJECTION ; DIAGNOSIS
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(NSFC 61573169 ; NSFC 61725305)
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000427991400001
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21988
专题复杂系统管理与控制国家重点实验室_先进机器人
作者单位1.Jiangnan Univ, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
2.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Qinghua,Pan, Feng,Zhao, Zhonggai,et al. Process Modeling and Monitoring With Incomplete Data Based on Robust Probabilistic Partial Least Square Method[J]. IEEE ACCESS,2018,6:10160-10168.
APA Li, Qinghua,Pan, Feng,Zhao, Zhonggai,&Yu, Junzhi.(2018).Process Modeling and Monitoring With Incomplete Data Based on Robust Probabilistic Partial Least Square Method.IEEE ACCESS,6,10160-10168.
MLA Li, Qinghua,et al."Process Modeling and Monitoring With Incomplete Data Based on Robust Probabilistic Partial Least Square Method".IEEE ACCESS 6(2018):10160-10168.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Qinghua]的文章
[Pan, Feng]的文章
[Zhao, Zhonggai]的文章
百度学术
百度学术中相似的文章
[Li, Qinghua]的文章
[Pan, Feng]的文章
[Zhao, Zhonggai]的文章
必应学术
必应学术中相似的文章
[Li, Qinghua]的文章
[Pan, Feng]的文章
[Zhao, Zhonggai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。