P2T: Part-to-Target Tracking via Deep Regression Learning
Gao, Junyu1,2; Zhang, Tianzhu1,2; Yang, Xiaoshan1,2; Xu, Changsheng1,2
2018-06
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
卷号27期号:6页码:3074-3086
文章类型Article
摘要Most existing part-based tracking methods are part-to-part trackers, which usually have two separated steps including the part matching and target localization. Different from existing methods, in this paper, we propose a novel part-to-target (P2T) tracker in a unified fashion by inferring target location from parts directly. To achieve this goal, we propose a novel deep regression model for P2T regression in an end-to-end framework via convolutional neural networks. The proposed model is designed not only to exploit the part context information to preserve object spatial layout structure, but also to learn part reliability to emphasize part importance for the robust P2T regression. We evaluate the proposed tracker on four challenging benchmark sequences, and extensive experimental results demonstrate that our method performs favorably against state-of-the-art trackers because of the powerful capacity of the proposed deep regression model.
关键词Visual Tracking Deep Learning Part-based Tracker
WOS标题词Science & Technology ; Technology
DOI10.1109/TIP.2018.2813166
关键词[WOS]ROBUST VISUAL TRACKING ; OBJECT TRACKING ; BENCHMARK ; MODEL
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61432019 ; Key Research Program of Frontier Sciences, CAS(QYZDJ-SSW-JSC039) ; Beijing Natural Science Foundation(4172062) ; 61572498 ; 61532009 ; 61702511 ; 61572296)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000428930600014
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21999
专题模式识别国家重点实验室_多媒体计算与图形学
作者单位1.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Gao, Junyu,Zhang, Tianzhu,Yang, Xiaoshan,et al. P2T: Part-to-Target Tracking via Deep Regression Learning[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2018,27(6):3074-3086.
APA Gao, Junyu,Zhang, Tianzhu,Yang, Xiaoshan,&Xu, Changsheng.(2018).P2T: Part-to-Target Tracking via Deep Regression Learning.IEEE TRANSACTIONS ON IMAGE PROCESSING,27(6),3074-3086.
MLA Gao, Junyu,et al."P2T: Part-to-Target Tracking via Deep Regression Learning".IEEE TRANSACTIONS ON IMAGE PROCESSING 27.6(2018):3074-3086.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
P2T Part-to-Target T(5803KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Junyu]的文章
[Zhang, Tianzhu]的文章
[Yang, Xiaoshan]的文章
百度学术
百度学术中相似的文章
[Gao, Junyu]的文章
[Zhang, Tianzhu]的文章
[Yang, Xiaoshan]的文章
必应学术
必应学术中相似的文章
[Gao, Junyu]的文章
[Zhang, Tianzhu]的文章
[Yang, Xiaoshan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: P2T Part-to-Target Tracking via Deep.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。