CASIA OpenIR  > 脑网络组研究中心
Prognostication of chronic disorders of consciousness using brain functional networks and clinical characteristics
Song Ming1,2; Yi Yang3; Jianghong He3; Zhengyi Yang1,2; Shan Yu1,2; Qiuyou Xie4; Xiaoyu Xia3; Yuanyuan Dang3; Qiang Zhang3; Xinhuai Wu5; Yue Cui1,2; Bing Hou1,2; Ronghao Yu4; Ruxiang Xu3; Tianzi Jiang1,2,6,7,8
2018-08-14
发表期刊eLife
卷号2018期号:7页码:e36173
摘要Disorders of consciousness are a heterogeneous mixture of different diseases or injuries. Although some indicators and models have been proposed for prognostication, any single method when used alone carries a high risk of false prediction. This study aimed to develop a multidomain prognostic model that combines resting state functional MRI with three clinical characteristics to predict one year outcomes at the single-subject level. The model discriminated between patients who would later recover consciousness and those who would not with an accuracy of around 88% on three datasets from two medical centers. It was also able to identify the prognostic importance of different predictors, including brain functions and clinical characteristics. To our knowledge, this is the first reported implementation of a multidomain prognostic model based on resting state functional MRI and clinical characteristics in chronic disorders of consciousness, which we suggest is accurate, robust, and interpretable.
关键词Disorders Of Consciousness Prognosis Resting State Fmri Functional Connectivity Brain Network
DOIhttps://doi.org/10.7554/eLife.36173
收录类别SCI ; SSCi
WOS记录号WOS:000444967900001
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/22078
专题脑网络组研究中心
通讯作者Tianzi Jiang
作者单位1.National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences
2.Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences,
3.Department of Neurosurgery, PLA Army General Hospital
4.Centre for Hyperbaric Oxygen and Neurorehabilitation, Guangzhou General Hospital of Guangzhou Military Command
5.Department of Radiology, PLA Army General Hospital
6.CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences
7.Key Laboratory for Neuroinformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China
8.The Queensland Brain Institute, University of Queensland
推荐引用方式
GB/T 7714
Song Ming,Yi Yang,Jianghong He,et al. Prognostication of chronic disorders of consciousness using brain functional networks and clinical characteristics[J]. eLife,2018,2018(7):e36173.
APA Song Ming.,Yi Yang.,Jianghong He.,Zhengyi Yang.,Shan Yu.,...&Tianzi Jiang.(2018).Prognostication of chronic disorders of consciousness using brain functional networks and clinical characteristics.eLife,2018(7),e36173.
MLA Song Ming,et al."Prognostication of chronic disorders of consciousness using brain functional networks and clinical characteristics".eLife 2018.7(2018):e36173.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Song_Yang_elife_2018(7400KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song Ming]的文章
[Yi Yang]的文章
[Jianghong He]的文章
百度学术
百度学术中相似的文章
[Song Ming]的文章
[Yi Yang]的文章
[Jianghong He]的文章
必应学术
必应学术中相似的文章
[Song Ming]的文章
[Yi Yang]的文章
[Jianghong He]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Song_Yang_elife_2018_pDOC_36173-v2.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。