Multi-task Layout Analysis for Historical Handwritten Documents Using Fully Convolutional Networks,
Yue Xu; Fei Yin; Zhaoxiang Zhang; Chenglin Liu
2018-07
会议名称International Joint Conference on Artificial Intelligence
会议日期13-19
会议地点Stockholm, Sweden,
摘要Layout analysis is a fundamental process in document image analysis and understanding. It contains three key sub-processes which are page segmentation, text line segmentation and baseline detection. In this paper, we propose a multi-task layout analysis method that uses a single FCN model to solve the above three problems simultaneously. In our work, a multi-task FCN is trained to segment the document image into different regions (background, main text, comment and decoration), circle the contour of text lines and detect the centerlines of text lines by classifying pixels into different categories. By supervised learning on document images with pixel-wise labeled, the FCN can extract discriminative features and perform pixel-wise classification accurately. Based on the above results, text lines can be segmented and the baseline of each text line can be determined. After that, post-processing steps are taken to reduce noises, correct wrong segmentations and produce the final results. Experimental results on the public dataset DIVA-HisDB [Simistira et al., 2016] containing challenging medieval manuscripts demonstrate the effectiveness and superiority of the proposed method.
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/22091
专题模式识别国家重点实验室_模式分析与学习
作者单位Institute of Automation of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Yue Xu,Fei Yin,Zhaoxiang Zhang,et al. Multi-task Layout Analysis for Historical Handwritten Documents Using Fully Convolutional Networks,[C],2018.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Multi-FCN-Page.pdf(2345KB)会议论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yue Xu]的文章
[Fei Yin]的文章
[Zhaoxiang Zhang]的文章
百度学术
百度学术中相似的文章
[Yue Xu]的文章
[Fei Yin]的文章
[Zhaoxiang Zhang]的文章
必应学术
必应学术中相似的文章
[Yue Xu]的文章
[Fei Yin]的文章
[Zhaoxiang Zhang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Multi-FCN-Page.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。