Image-to-Markup Generation via Paired Adversarial Learning
Jin-Wen Wu; Fei Yin; Yan-Ming Zhang; Xu-Yao Zhang; Cheng-Lin Liu
2018-09
会议名称European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2018
会议日期10-14
会议地点Dublin, Ireland
摘要Motivated by the fact that humans can grasp semantic-invariant features shared by the same category while attention-based models focus mainly on discriminative features of each object, we propose a scalable paired adversarial learning (PAL) method for image-to-markup generation. PAL can incorporate the prior knowledge of standard templates to guide the attention-based model for discovering semantic-invariant features when the model pays attention to regions of interest. Furthermore, we also extend the convolutional attention mechanism to speed up the image-to-markup parsing process while achieving competitive performance compared with recurrent attention models. We evaluate the proposed method in the scenario of handwritten-image-to-LaTeX generation, i.e., converting handwritten mathematical expressions to LaTeX. Experimental results show that our method can significantly improve the generalization performance over standard attention-based encoder-decoder models.
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/22093
专题模式识别国家重点实验室_模式分析与学习
作者单位NLPR, Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Jin-Wen Wu,Fei Yin,Yan-Ming Zhang,et al. Image-to-Markup Generation via Paired Adversarial Learning[C],2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jin-Wen Wu]的文章
[Fei Yin]的文章
[Yan-Ming Zhang]的文章
百度学术
百度学术中相似的文章
[Jin-Wen Wu]的文章
[Fei Yin]的文章
[Yan-Ming Zhang]的文章
必应学术
必应学术中相似的文章
[Jin-Wen Wu]的文章
[Fei Yin]的文章
[Yan-Ming Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。