CASIA OpenIR  > 机器人理论与应用团队
Rough extreme learning machine: A new classification method based on uncertainty measure
Feng, Lin1; Xu, Shuliang2; Wang, Feilong1; Liu, Shenglan1; Qiao, Hong3,4
发表期刊NEUROCOMPUTING
ISSN0925-2312
2019-01-24
卷号325页码:269-282
通讯作者Feng, Lin(fenglin@dlut.edu.cn)
摘要Extreme learning machine (ELM) is a new single hidden layer feedback neural network. The weights of the input layer and the biases of neurons in hidden layer are randomly generated; the weights of the output layer can be analytically determined. ELM has been achieved good results for a large number of classification tasks. In this paper, a new extreme learning machine called rough extreme learning machine (RELM) was proposed. RELM uses rough set to divide data into upper approximation set and lower approximation set, and the two approximation sets are utilized to train upper approximation neurons and lower approximation neurons. In addition, an attribute reduction is executed in this algorithm to remove redundant attributes. The experimental results showed, comparing with the comparison algorithms, RELM can get a better accuracy and a simpler neural network structure on most data sets; RELM cannot only maintain the advantages of fast speed, but also effectively cope with the classification task for high-dimensional data. (C) 2018 Elsevier B.V. All rights reserved.
关键词Extreme learning machine Rough set Attribute reduction Classification Neural network
DOI10.1016/j.neucom.2018.09.062
关键词[WOS]ARTIFICIAL NEURAL-NETWORK ; HIDDEN NODES ; SET-THEORY ; OPTIMIZATION ; REGRESSION ; SELECTION ; REDUCTS ; MODELS
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61672130] ; National Natural Science Foundation of China[61602082] ; National Natural Science Foundation of China[61627808] ; National Natural Science Foundation of China[91648205] ; Foundation of LiaoNing Educational Committee[201602151] ; MOE Research Center for Online Education of China[2016YB121] ; Open Program of State Key Laboratory of Software Architecture[SKLSAOP1701] ; Development of Science and Technology of Guangdong Province Special Fund Project[2016B090910001]
项目资助者National Natural Science Foundation of China ; Foundation of LiaoNing Educational Committee ; MOE Research Center for Online Education of China ; Open Program of State Key Laboratory of Software Architecture ; Development of Science and Technology of Guangdong Province Special Fund Project
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000449695000024
出版者ELSEVIER SCIENCE BV
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/22612
专题机器人理论与应用团队
通讯作者Feng, Lin
作者单位1.Dalian Univ Technol, Sch Innovat & Entrepreneurship, Dalian, Peoples R China
2.Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian, Peoples R China
3.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
4.State Key Lab Management & Control Complex Syst, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Feng, Lin,Xu, Shuliang,Wang, Feilong,et al. Rough extreme learning machine: A new classification method based on uncertainty measure[J]. NEUROCOMPUTING,2019,325:269-282.
APA Feng, Lin,Xu, Shuliang,Wang, Feilong,Liu, Shenglan,&Qiao, Hong.(2019).Rough extreme learning machine: A new classification method based on uncertainty measure.NEUROCOMPUTING,325,269-282.
MLA Feng, Lin,et al."Rough extreme learning machine: A new classification method based on uncertainty measure".NEUROCOMPUTING 325(2019):269-282.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Feng, Lin]的文章
[Xu, Shuliang]的文章
[Wang, Feilong]的文章
百度学术
百度学术中相似的文章
[Feng, Lin]的文章
[Xu, Shuliang]的文章
[Wang, Feilong]的文章
必应学术
必应学术中相似的文章
[Feng, Lin]的文章
[Xu, Shuliang]的文章
[Wang, Feilong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。