CASIA OpenIR  > 多媒体计算与图形学团队
Understanding Dynamic Cross-OSN Associations for Cold-Start Recommendation
Sang, Jitao1,2; Yan, Ming3; Xu, Changsheng4
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
ISSN1520-9210
2018-12-01
卷号20期号:12页码:3439-3451
通讯作者Sang, Jitao(jtsang@bjtu.edu.cn)
摘要Online social networks (OSNs) have become an essential part of people's daily life, and an increasing number of users are now using multiple OSNs for different social media services simultaneously. As a result, user's interests and preferences usually distribute in different OSNs. While most of the existing work mainly aggregates the distributed user behaviors or features directly, recently very few efforts have been focused on understanding the crass-OSN association from collective user behaviors. In this paper, we go one step further to consider the dynamic characteristic of user behaviors and propose a dynamic cross-OSN association mining framework. In this framework, dynamic user modeling is first conducted to capture the drift of user interest in each OSN. A session-based factorization method is then proposed to establish the cross-OSN association in a dynamic manner, by incrementally updating the derived association each time a new session of data arrives. Based on the derived dynamic association, we finally design a cold-start YouTube video recommendation application, by only utilizing users' behaviors in Twitter. Experiments are conducted using real-world user data from Twitter and YouTube. The results demonstrate the effectiveness of this proposed framework in capturing the underlying association between different OSNs and achieving superior cold-start recommendation performance.
关键词Cross-OSN association dynamic user modeling cold-start recommendation
DOI10.1109/TMM.2018.2839530
关键词[WOS]SYSTEMS
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61432019] ; National Natural Science Foundation of China[61720106006] ; National Natural Science Foundation of China[U1705262] ; National Natural Science Foundation of China[61632004] ; National Natural Science Foundation of China[61632115] ; National Natural Science Foundation of China[61672518] ; National Natural Science Foundation of China[61473030] ; National Natural Science Foundation of China[61332016] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-JSC039] ; Beijing Municipal Science and Technology Commission[Z181100008918012]
项目资助者National Natural Science Foundation of China ; Key Research Program of Frontier Sciences, CAS ; Beijing Municipal Science and Technology Commission
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:000450212600021
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/22615
专题多媒体计算与图形学团队
通讯作者Sang, Jitao
作者单位1.Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
2.Beijing Jiaotong Univ, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China
3.Alibaba, Hangzhou 311121, Zhejiang, Peoples R China
4.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Sang, Jitao,Yan, Ming,Xu, Changsheng. Understanding Dynamic Cross-OSN Associations for Cold-Start Recommendation[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2018,20(12):3439-3451.
APA Sang, Jitao,Yan, Ming,&Xu, Changsheng.(2018).Understanding Dynamic Cross-OSN Associations for Cold-Start Recommendation.IEEE TRANSACTIONS ON MULTIMEDIA,20(12),3439-3451.
MLA Sang, Jitao,et al."Understanding Dynamic Cross-OSN Associations for Cold-Start Recommendation".IEEE TRANSACTIONS ON MULTIMEDIA 20.12(2018):3439-3451.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sang, Jitao]的文章
[Yan, Ming]的文章
[Xu, Changsheng]的文章
百度学术
百度学术中相似的文章
[Sang, Jitao]的文章
[Yan, Ming]的文章
[Xu, Changsheng]的文章
必应学术
必应学术中相似的文章
[Sang, Jitao]的文章
[Yan, Ming]的文章
[Xu, Changsheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。