CASIA OpenIR  > 类脑智能研究中心  > 神经计算及脑机交互
Automatic Mitochondria Segmentation for EM Data Using a 3D Supervised Convolutional Network
Xiao, Chi1,2; Chen, Xi1; Li, Weifu3; Li, Linlin1; Wang, Lu4; Xie, Qiwei1,5; Han, Hua1,2,6
发表期刊FRONTIERS IN NEUROANATOMY
ISSN1662-5129
2018-11-02
卷号12页码:14
通讯作者Xie, Qiwei(qiwei.xie@bjut.edu.cn) ; Han, Hua(hua.han@ia.ac.cn)
摘要Recent studies have supported the relation between mitochondrial functions and degenerative disorders related to ageing, such as Alzheimer's and Parkinson's diseases. Since these studies have exposed the need for detailed and high-resolution analysis of physical alterations in mitochondria, it is necessary to be able to perform segmentation and 3D reconstruction of mitochondria. However, due to the variety of mitochondrial structures, automated mitochondria segmentation and reconstruction in electron microscopy (EM) images have proven to be a difficult and challenging task. This paper puts forward an effective and automated pipeline based on deep learning to realize mitochondria segmentation in different EM images. The proposed pipeline consists of three parts: (1) utilizing image registration and histogram equalization as image pre-processing steps to maintain the consistency of the dataset; (2) proposing an effective approach for 3D mitochondria segmentation based on a volumetric, residual convolutional and deeply supervised network; and (3) employing a 3D connection method to obtain the relationship of mitochondria and displaying the 3D reconstruction results. To our knowledge, we are the first researchers to utilize a 3D fully residual convolutional network with a deeply supervised strategy to improve the accuracy of mitochondria segmentation. The experimental results on anisotropic and isotropic EM volumes demonstrate the effectiveness of our method, and the Jaccard index of our segmentation (91.8% in anisotropy, 90.0% in isotropy) and F1 score of detection (92.2% in anisotropy, 90.9% in isotropy) suggest that our approach achieved state-of-the-art results. Our fully automated pipeline contributes to the development of neuroscience by providing neurologists with a rapid approach for obtaining rich mitochondria statistics and helping them elucidate the mechanism and function of mitochondria.
关键词electron microscope deep learning volumetric mitochondria segmentation mitochondria morphology neuroinformatics
DOI10.3389/fnana.2018.00092
关键词[WOS]SCANNING-ELECTRON-MICROSCOPY ; CANCER ; IMAGES ; BRAIN ; RECONSTRUCTION ; SHAPE
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[11771130] ; National Natural Science Foundation of China[61673381] ; National Natural Science Foundation of China[61871177] ; National Natural Science Foundation of China[31472001] ; Special Program of Beijing Municipal Science and Technology Commission[Z161100000216146] ; Special Program of Beijing Municipal Science and Technology Commission[Z181100000118002] ; Scientific Research Instrument and Equipment Development Project of the CAS[YZ201671] ; Strategic Priority Research Program of the CAS[XDB02060001]
项目资助者National Natural Science Foundation of China ; Special Program of Beijing Municipal Science and Technology Commission ; Scientific Research Instrument and Equipment Development Project of the CAS ; Strategic Priority Research Program of the CAS
WOS研究方向Anatomy & Morphology ; Neurosciences & Neurology
WOS类目Anatomy & Morphology ; Neurosciences
WOS记录号WOS:000449098100001
出版者FRONTIERS MEDIA SA
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/22772
专题类脑智能研究中心_神经计算及脑机交互
通讯作者Xie, Qiwei; Han, Hua
作者单位1.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Sch Future Technol, Beijing, Peoples R China
3.Hubei Univ, Fac Math & Stat, Wuhan, Hubei, Peoples R China
4.Peking Univ, Acad Adv Interdisciplinary Studies, Beijing, Peoples R China
5.Beijing Univ Technol, Data Min Lab, Beijing, Peoples R China
6.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Xiao, Chi,Chen, Xi,Li, Weifu,et al. Automatic Mitochondria Segmentation for EM Data Using a 3D Supervised Convolutional Network[J]. FRONTIERS IN NEUROANATOMY,2018,12:14.
APA Xiao, Chi.,Chen, Xi.,Li, Weifu.,Li, Linlin.,Wang, Lu.,...&Han, Hua.(2018).Automatic Mitochondria Segmentation for EM Data Using a 3D Supervised Convolutional Network.FRONTIERS IN NEUROANATOMY,12,14.
MLA Xiao, Chi,et al."Automatic Mitochondria Segmentation for EM Data Using a 3D Supervised Convolutional Network".FRONTIERS IN NEUROANATOMY 12(2018):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xiao, Chi]的文章
[Chen, Xi]的文章
[Li, Weifu]的文章
百度学术
百度学术中相似的文章
[Xiao, Chi]的文章
[Chen, Xi]的文章
[Li, Weifu]的文章
必应学术
必应学术中相似的文章
[Xiao, Chi]的文章
[Chen, Xi]的文章
[Li, Weifu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。