CASIA OpenIR  > 脑网络组研究中心
Complexity in mood disorder diagnosis: fMRI connectivity networks predicted medication-class of response in complex patients
Osuch, E.1,2,3; Gao, S.4,5,6; Wammes, M.2; Theberge, J.1,2,3; Willimason, P.2,3; Neufeld, R. J.7; Du, Y.8,9; Sui, J.4,5,6,8,10; Calhoun, V.8,11
发表期刊ACTA PSYCHIATRICA SCANDINAVICA
ISSN0001-690X
2018-11-01
卷号138期号:5页码:472-482
通讯作者Osuch, E.(Elizabeth.osuch@lhsc.on.ca) ; Sui, J.(jing.sui@nlpr.ia.ac.cn)
摘要ObjectiveMethodsThis study determined the clinical utility of an fMRI classification algorithm predicting medication-class of response in patients with challenging mood diagnoses. Ninety-nine 16-27-year-olds underwent resting state fMRI scans in three groupsBD, MDD and healthy controls. A predictive algorithm was trained and cross-validated on the known-diagnosis patients using maximally spatially independent components (ICs), constructing a similarity matrix among subjects, partitioning the matrix in kernel space and optimizing support vector machine classifiers and IC combinations. This classifier was also applied to each of 12 new individual patients with unclear mood disorder diagnoses. ResultsConclusionClassification within the known-diagnosis group was approximately 92.4% accurate. The five maximally contributory ICs were identified. Applied to the complicated patients, the algorithm diagnosis was consistent with optimal medication-class of response to sustained recovery in 11 of 12 cases (i.e., almost 92% accuracy). This classification algorithm performed well for the know-diagnosis but also predicted medication-class of response in difficult-to-diagnose patients. Further research can enhance this approach and extend these findings to be more clinically accessible.
关键词mood disorders bipolar disorder functional neuroimaging machine learning differential diagnosis
DOI10.1111/acps.12945
关键词[WOS]MAJOR DEPRESSIVE-DISORDERS ; SCALE BRAIN NETWORKS ; UNIPOLAR DEPRESSION ; BIPOLAR DISORDER ; UNMEDICATED PATIENTS ; GROUP ICA ; ANTIDEPRESSANTS ; VALIDATION ; FRAMEWORK
收录类别SCI
语种英语
资助项目National Institutes of Health[P20GM103472] ; National Institutes of Health[1R01EB006841] ; National Institutes of Health[R01EB005846] ; China National High-Tech Development Plan (863 plan)[2015AA020513] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB02060005] ; China National Natural Science Foundation[81471367] ; China National Natural Science Foundation[61773380] ; China National Natural Science Foundation[61703253] ; Natural Science Foundation of Shanxi Province[2016021077] ; Lawson Health Research Institute[LHR D1374] ; Pfizer Independent Investigator Award[WS2249136] ; University of Western Ontario ; Schulich School of Medicine and Dentistry ; London Health Sciences Centre ; St. Joseph's Health Care ; Lawson Health Research Institute
项目资助者National Institutes of Health ; China National High-Tech Development Plan (863 plan) ; Strategic Priority Research Program of the Chinese Academy of Sciences ; China National Natural Science Foundation ; Natural Science Foundation of Shanxi Province ; Lawson Health Research Institute ; Pfizer Independent Investigator Award ; University of Western Ontario ; Schulich School of Medicine and Dentistry ; London Health Sciences Centre ; St. Joseph's Health Care ; Lawson Health Research Institute
WOS研究方向Psychiatry
WOS类目Psychiatry
WOS记录号WOS:000448780800011
出版者WILEY
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/22792
专题脑网络组研究中心
通讯作者Osuch, E.; Sui, J.
作者单位1.Univ Western Ontario, Schulich Sch Med & Dent, London Hlth Sci Ctr, Lawson Hlth Res Inst, London, ON, Canada
2.Univ Western Ontario, Schulich Sch Med & Dent, Dept Psychiat, London, ON, Canada
3.Univ Western Ontario, Dept Med Biophys, London, ON, Canada
4.Chinese Acad Sci, Inst Automat, Brainnetome Ctr, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China
5.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China
6.Univ Chinese Acad Sci, Beijing, Peoples R China
7.Univ Western Ontario, Dept Psychol, London, ON, Canada
8.Mind Res Network, Albuquerque, NM USA
9.Shanxi Univ, Sch Comp & Informat Technol, Taiyuan, Shanxi, Peoples R China
10.Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing, Peoples R China
11.Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
推荐引用方式
GB/T 7714
Osuch, E.,Gao, S.,Wammes, M.,et al. Complexity in mood disorder diagnosis: fMRI connectivity networks predicted medication-class of response in complex patients[J]. ACTA PSYCHIATRICA SCANDINAVICA,2018,138(5):472-482.
APA Osuch, E..,Gao, S..,Wammes, M..,Theberge, J..,Willimason, P..,...&Calhoun, V..(2018).Complexity in mood disorder diagnosis: fMRI connectivity networks predicted medication-class of response in complex patients.ACTA PSYCHIATRICA SCANDINAVICA,138(5),472-482.
MLA Osuch, E.,et al."Complexity in mood disorder diagnosis: fMRI connectivity networks predicted medication-class of response in complex patients".ACTA PSYCHIATRICA SCANDINAVICA 138.5(2018):472-482.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Osuch, E.]的文章
[Gao, S.]的文章
[Wammes, M.]的文章
百度学术
百度学术中相似的文章
[Osuch, E.]的文章
[Gao, S.]的文章
[Wammes, M.]的文章
必应学术
必应学术中相似的文章
[Osuch, E.]的文章
[Gao, S.]的文章
[Wammes, M.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。