Automated pulmonary nodule detection in CT images using deep convolutional neural networks
Xie, Hongtao1; Yang, Dongbao1,2,3; Sun, Nannan3; Chen, Zhineng4; Zhang, Yongdong1
发表期刊PATTERN RECOGNITION
ISSN0031-3203
2019
卷号85页码:109-119
通讯作者Yang, Dongbao(yangdongbao0903@163.com)
摘要Lung cancer is one of the leading causes of cancer-related death worldwide. Early diagnosis can effectively reduce the mortality, and computer-aided diagnosis (CAD) as an important way to assist doctors has developed rapidly. In particular, automated pulmonary nodule detection in computed tomography (CT) images is crucial to CAD. It is a challenging task to quickly locate the exact positions of lung nodules. In this paper, a novel automated pulmonary nodule detection framework with 2D convolutional neural network (CNN) is proposed to assist the CT reading process. Firstly, we adjust the structure of Faster R-CNN with two region proposal networks and a deconvolutional layer to detect nodule candidates, and then three models are trained for three kinds of slices for later result fusion. Secondly, a boosting architecture based on 2D CNN is designed for false positive reduction, which is a classifier to distinguish true nodules from the candidates. The misclassified samples are still kept for retraining a model which boosts the sensitivity for pulmonary nodule detection. Finally, the results of these networks are fused to vote out the final classification results. Extensive experiments are conducted on LUNA16, and the sensitivity of nodule candidate detection achieves 86.42%. For the false positive reduction, the sensitivity reaches 73.4% and 74.4% at 1/8 and 1/4 FPs/scan, respectively. It illustrates that the proposed method can obviously achieve accurate pulmonary nodule detection. (C) 2018 Elsevier Ltd. All rights reserved.
关键词Nodule detection Convolutional neural network False positive reduction Computer-aided diagnosis
DOI10.1016/j.patcog.2018.07.031
关键词[WOS]COMPUTED-TOMOGRAPHY IMAGES ; FALSE-POSITIVE REDUCTION ; AIDED DETECTION ; LUNG NODULES ; CLASSIFICATION ; CNNS ; SEGMENTATION ; VALIDATION ; SEQUENCES ; FRAMEWORK
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFC0820600] ; National Natural Science Foundation of China[61525206] ; National Natural Science Foundation of China[61771468] ; National Natural Science Foundation of China[61772526] ; Youth Innovation Promotion Association Chinese Academy of Sciences[2017209]
项目资助者National Key Research and Development Program of China ; National Natural Science Foundation of China ; Youth Innovation Promotion Association Chinese Academy of Sciences
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000447819300010
出版者ELSEVIER SCI LTD
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/22801
专题数字内容技术与服务研究中心_听觉模型与认知计算
通讯作者Yang, Dongbao
作者单位1.Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230026, Anhui, Peoples R China
2.Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Peoples R China
3.Chinese Acad Sci, Inst Informat Engn, Natl Engn Lab Informat Secur Technol, Beijing 100093, Peoples R China
4.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Xie, Hongtao,Yang, Dongbao,Sun, Nannan,et al. Automated pulmonary nodule detection in CT images using deep convolutional neural networks[J]. PATTERN RECOGNITION,2019,85:109-119.
APA Xie, Hongtao,Yang, Dongbao,Sun, Nannan,Chen, Zhineng,&Zhang, Yongdong.(2019).Automated pulmonary nodule detection in CT images using deep convolutional neural networks.PATTERN RECOGNITION,85,109-119.
MLA Xie, Hongtao,et al."Automated pulmonary nodule detection in CT images using deep convolutional neural networks".PATTERN RECOGNITION 85(2019):109-119.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xie, Hongtao]的文章
[Yang, Dongbao]的文章
[Sun, Nannan]的文章
百度学术
百度学术中相似的文章
[Xie, Hongtao]的文章
[Yang, Dongbao]的文章
[Sun, Nannan]的文章
必应学术
必应学术中相似的文章
[Xie, Hongtao]的文章
[Yang, Dongbao]的文章
[Sun, Nannan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。