CASIA OpenIR  > 视频内容安全团队
Hierarchical Contextual Refinement Networks for Human Pose Estimation
Nie, Xuecheng1; Feng, Jiashi1; Xing, Junliang2; Xiao, Shengtao3; Yan, Shuicheng1,3
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
2019-02-01
卷号28期号:2页码:924-936
通讯作者Nie, Xuecheng(niexuecheng@u.nus.edu)
摘要Predicting human pose in the wild is a challenging problem due to high flexibility of joints and possible occlusion. Existing approaches generally tackle the difficulties either by holistic prediction or multi-stage processing, which suffer from poor performance for locating challenging joints or high computational cost. In this paper, we propose a new hierarchical contextual refinement network (HCRN) to robustly predict human poses in an efficient manner, where human body joints of different complexities are processed at different layers in a context hierarchy. Different from existing approaches, our proposed model predicts positions of joints from easy to difficult in a single stage through effectively exploiting informative contexts provided in the previous layer. Such approach offers two appealing advantages over state-of-the-arts: 1) more accurate than predicting all the joints together and 2) more efficient than multi-stage processing methods. We design a contextual refinement unit (CRU) to implement the proposed model, which enables auto-diffusion of joint detection results to effectively transfer informative context from easy joints to difficult ones. In this way, difficult joints can be reliably detected even in presence of occlusion or severe distracting factors. Multiple CRUs are organized into a tree-structured hierarchy which is end-to-end trainable and does not require processing joints for multiple iterations. Comprehensive experiments evaluate the efficacy and efficiency of the proposed HCRN model to improve well-established baselines and achieve the new state-of-the-art on multiple human pose estimation benchmarks.
关键词Human pose estimation joint complexity-aware hierarchical contextual refinement network
DOI10.1109/TIP.2018.2872628
关键词[WOS]PICTORIAL STRUCTURES ; FLEXIBLE MIXTURES ; RECOGNITION ; PEOPLE ; PARTS
收录类别SCI
语种英语
资助项目NUS[IDS R-263-000-C67-646] ; ECRA[R-263-000-C87-133] ; MOE Tier-II[R-263-000-D17-112]
项目资助者NUS ; ECRA ; MOE Tier-II
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000448501800007
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/22807
专题视频内容安全团队
通讯作者Nie, Xuecheng
作者单位1.Natl Univ Singapore, ECE Dept, Learning & Vis Lab, Singapore 117583, Singapore
2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
3.Qihoo 360 AI Inst, Beijing 100016, Peoples R China
推荐引用方式
GB/T 7714
Nie, Xuecheng,Feng, Jiashi,Xing, Junliang,et al. Hierarchical Contextual Refinement Networks for Human Pose Estimation[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2019,28(2):924-936.
APA Nie, Xuecheng,Feng, Jiashi,Xing, Junliang,Xiao, Shengtao,&Yan, Shuicheng.(2019).Hierarchical Contextual Refinement Networks for Human Pose Estimation.IEEE TRANSACTIONS ON IMAGE PROCESSING,28(2),924-936.
MLA Nie, Xuecheng,et al."Hierarchical Contextual Refinement Networks for Human Pose Estimation".IEEE TRANSACTIONS ON IMAGE PROCESSING 28.2(2019):924-936.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nie, Xuecheng]的文章
[Feng, Jiashi]的文章
[Xing, Junliang]的文章
百度学术
百度学术中相似的文章
[Nie, Xuecheng]的文章
[Feng, Jiashi]的文章
[Xing, Junliang]的文章
必应学术
必应学术中相似的文章
[Nie, Xuecheng]的文章
[Feng, Jiashi]的文章
[Xing, Junliang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。