Semi-supervised domain adaptation via Fredholm integral based kernel methods
Wang, Wei1; Wang, Hao2; Zhang, Zhaoxiang3; Zhang, Chen2; Gao, Yang1
发表期刊PATTERN RECOGNITION
ISSN0031-3203
2019
卷号85页码:185-197
通讯作者Wang, Wei(wangwei2014@iscas.ac.cn)
摘要Along with the emergence of domain adaptation in semi-supervised setting, dealing with the noisy and complex data in classifier adaptation underscores its growing importance. We believe a large amount of unlabeled data in target domain, which are always only used in distribution alignment, are more of a great source of information for this challenge. In this paper, we propose a novel Transfer Fredholm Multiple Kernel Learning (TFMKL) framework to suppress the noise for complex data distributions. Firstly, with exploring unlabeled target data, TFMKL learns a cross-domain predictive model by developing a Fredholm integral based kernel prediction framework which is proven to be effective in noise suppression. Secondly, TFMKL explicitly extends the applied range of unlabeled target samples into adaptive classifier building and distribution alignment. Thirdly, multiple kernels are explored to induce an optimal learning space. Correspondingly, TFMKL is distinguished with allowing for noise resiliency, facilitating knowledge transfer and analyzing complex data characteristics at the same time. Furthermore, an effective optimization procedure is presented based on the reduced gradient, guaranteeing rapid convergence. We emphasize the adaptability of TFMKL to different domain adaptation tasks due to its extension to different predictive models. In particular, two models based on square loss and hinge loss respectively are proposed within the TFMKL framework. Comprehensive empirical studies on benchmark data sets verify the effectiveness and the noise resiliency of our proposed methods. (C) 2018 Elsevier Ltd. All rights reserved.
关键词Domain adaptation Semi-supervised learning Multiple kernel learning Hilbert space embedding of distributions
DOI10.1016/j.patcog.2018.07.035
关键词[WOS]REGULARIZATION ; REPRESENTATION ; CLASSIFIERS ; FRAMEWORK
收录类别SCI
语种英语
资助项目Natural Science Foundation of China[61502466] ; Natural Science Foundation of China[61773375] ; Natural Science Foundation of China[61672501] ; Natural Science Foundation of China[61602453] ; Beijing Municipal Natural Science Foundation[Z181100008918010]
项目资助者Natural Science Foundation of China ; Beijing Municipal Natural Science Foundation
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000447819300016
出版者ELSEVIER SCI LTD
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/22813
专题模式识别国家重点实验室_模式分析与学习
通讯作者Wang, Wei
作者单位1.Chinese Acad Sci, Inst Software, Beijing, Peoples R China
2.360 Search Lab, Beijing 360, Peoples R China
3.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Wei,Wang, Hao,Zhang, Zhaoxiang,et al. Semi-supervised domain adaptation via Fredholm integral based kernel methods[J]. PATTERN RECOGNITION,2019,85:185-197.
APA Wang, Wei,Wang, Hao,Zhang, Zhaoxiang,Zhang, Chen,&Gao, Yang.(2019).Semi-supervised domain adaptation via Fredholm integral based kernel methods.PATTERN RECOGNITION,85,185-197.
MLA Wang, Wei,et al."Semi-supervised domain adaptation via Fredholm integral based kernel methods".PATTERN RECOGNITION 85(2019):185-197.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Wei]的文章
[Wang, Hao]的文章
[Zhang, Zhaoxiang]的文章
百度学术
百度学术中相似的文章
[Wang, Wei]的文章
[Wang, Hao]的文章
[Zhang, Zhaoxiang]的文章
必应学术
必应学术中相似的文章
[Wang, Wei]的文章
[Wang, Hao]的文章
[Zhang, Zhaoxiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。