CASIA OpenIR  > 多媒体计算与图形学团队
Interactive stereo image segmentation via adaptive prior selection
Ma, Wei1; Qin, Yue1; Xu, Shibiao2; Zhang, Xiaopeng2
发表期刊MULTIMEDIA TOOLS AND APPLICATIONS
ISSN1380-7501
2018-11-01
卷号77期号:21页码:28709-28724
通讯作者Xu, Shibiao(shibiao.xu@ia.ac.cn) ; Zhang, Xiaopeng(xiaopeng.zhang@ia.ac.cn)
摘要Interactive stereo image segmentation (i.e., cutting out objects from stereo pairs with limited user assistance) is an important research topic in computer vision. Given a pair of images, users mark a few foreground/background pixels, based on which prior models are formulated for labeling unknown pixels. Note that color priors might not help if the marked foreground and background have similar colors. However, integrating multiple types of priors, e.g., color and disparity in segmenting stereo pairs, is not trivial. This is because differing pairs of images and even differing pixels in the same image might require different proportions of the priors. Besides, disparities of natural images are too noisy to be directly used. This paper presents a method that can adaptively determine the proportion of the priors (color or disparity) for each pixel. Specifically speaking, the segmentation problem is defined in the framework of MRF (Markov Random Field). We formulate an MRF energy function which is composed of clues from the two types of priors, as well as neighborhood smoothness and stereo correspondence constraints. The weights of the color and disparity priors at each pixel are treated as variables which are optimized together with the label (foreground or background) of the pixel. In order to overcome the noise problem, the weight of the disparity prior is controlled by a confidence value learned from data. The energy function is optimized by using multi-label graph cut. Experimental results show that our method performs well.
关键词Stereo image segmentation Interactive segmentation Prior selection Multi-label MRF Graph cut
DOI10.1007/s11042-018-6067-5
关键词[WOS]GRAPH CUTS
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61771026] ; National Natural Science Foundation of China[61379096] ; National Natural Science Foundation of China[61671451] ; National Natural Science Foundation of China[61502490] ; Scientific Research Project of Beijing Educational Committee[KM201510005015] ; Open Project Program of the National Laboratory of Pattern Recognition (NLPR)[4152006] ; Beijing Municipal Natural Science Foundation[4152006]
项目资助者National Natural Science Foundation of China ; Scientific Research Project of Beijing Educational Committee ; Open Project Program of the National Laboratory of Pattern Recognition (NLPR) ; Beijing Municipal Natural Science Foundation
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000446601500038
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/23050
专题多媒体计算与图形学团队
通讯作者Xu, Shibiao; Zhang, Xiaopeng
作者单位1.Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan St, Beijing 100124, Peoples R China
2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Ma, Wei,Qin, Yue,Xu, Shibiao,et al. Interactive stereo image segmentation via adaptive prior selection[J]. MULTIMEDIA TOOLS AND APPLICATIONS,2018,77(21):28709-28724.
APA Ma, Wei,Qin, Yue,Xu, Shibiao,&Zhang, Xiaopeng.(2018).Interactive stereo image segmentation via adaptive prior selection.MULTIMEDIA TOOLS AND APPLICATIONS,77(21),28709-28724.
MLA Ma, Wei,et al."Interactive stereo image segmentation via adaptive prior selection".MULTIMEDIA TOOLS AND APPLICATIONS 77.21(2018):28709-28724.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ma, Wei]的文章
[Qin, Yue]的文章
[Xu, Shibiao]的文章
百度学术
百度学术中相似的文章
[Ma, Wei]的文章
[Qin, Yue]的文章
[Xu, Shibiao]的文章
必应学术
必应学术中相似的文章
[Ma, Wei]的文章
[Qin, Yue]的文章
[Xu, Shibiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。