CASIA OpenIR  > 模式识别国家重点实验室  > 自然语言处理
Sentiment Classification of Social Media Text Considering User Attribute
Li, Junjie1,2; Yang, Haitong3; Zong,Chengqing1,2
2016
会议名称The Fifth Conference on Natural Language Processing and Chinese Computing & The Twenty Fourth International Conference on Computer Processing of Oriental Languages
会议日期2016-12
会议地点Kunming, China
摘要

Social media texts pose a great challenge to sentiment classification. Existing classification methods focus on exploiting sophisticated features or incorporating user interactions, such as following and retweeting. Nevertheless, these methods ignore user attributes such as age, gender and location, which is proved to be a very important prior in determining sentiment polarity according to our analysis. In this paper, we propose two algorithms to make full use of user attributes: 1) incorporate them as simple features, 2) design a graph-based method to model relationship between tweets posted by users with similar attributes. The extensive experiments on seven movie datasets in Sina Weibo show the superior performance of our methods in handling these short and informal texts.

收录类别EI
语种英语
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/23103
专题模式识别国家重点实验室_自然语言处理
通讯作者Zong,Chengqing
作者单位1.National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, China
2.University of Chinese Academy of Sciences, Beijing, China
3.School of Computer, Central China Normal University, Wuhan 430079, China
推荐引用方式
GB/T 7714
Li, Junjie,Yang, Haitong,Zong,Chengqing. Sentiment Classification of Social Media Text Considering User Attribute[C],2016.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Li2016_Chapter_Senti(618KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Junjie]的文章
[Yang, Haitong]的文章
[Zong,Chengqing]的文章
百度学术
百度学术中相似的文章
[Li, Junjie]的文章
[Yang, Haitong]的文章
[Zong,Chengqing]的文章
必应学术
必应学术中相似的文章
[Li, Junjie]的文章
[Yang, Haitong]的文章
[Zong,Chengqing]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Li2016_Chapter_SentimentClassificationOfSocia.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。