Hand Gesture Recognition using MYO Armband
Shunzhan He; Chenguan Yang; Min Wang; Long Cheng
2017
会议名称Chinese Automation Congress (CAC)
会议日期OCT 20-22, 2017
会议地点Jinan
会议举办国China
摘要Surface electromyography (sEMG) is widely used in clinical diagnosis, rehabilitation engineering and human-computer interaction and other fields. In this paper, we use Myo armband to collect sEMG signals. Myo armband can be worn above any elbow of any arm and it can capture the bioelectric signal generated when the arm muscles move. MYO can pass of signals through its low-power Blue-tooth, and its interference is small, which makes the signal quality really good. By collecting the sEMG signals of the upper limb forearm, we extract five eigenvalues in the time domain, and use the BP neural network classification algorithm to realize the recognition of six gestures in this paper. Experimental results show that the use of MYO for gesture recognition can get a very good recognition results, it can accurately identify the six hand movements with the average recognition rate of 93%.
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/23122
专题复杂系统管理与控制国家重点实验室_先进机器人
推荐引用方式
GB/T 7714
Shunzhan He,Chenguan Yang,Min Wang,et al. Hand Gesture Recognition using MYO Armband[C],2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shunzhan He]的文章
[Chenguan Yang]的文章
[Min Wang]的文章
百度学术
百度学术中相似的文章
[Shunzhan He]的文章
[Chenguan Yang]的文章
[Min Wang]的文章
必应学术
必应学术中相似的文章
[Shunzhan He]的文章
[Chenguan Yang]的文章
[Min Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。