Neural learning enhanced teleoperation control of robots with uncertainties
Chenguang Yang; Junshen Chen; Long Cheng
2016
会议名称 9th International Conference on Human System Interactions (HSI)
会议日期JUL 06-08, 2016
会议地点Portsmouth
会议举办国England
摘要For most teleoperation tasks, it is desired that the telerobot manipulator follows timely and precisely the reference motion set at the master side. However, the conventional control approach may not guarantee the desired performance when there are dynamic uncertainties, especially when there is a notable variation of the telerobot's payload. In this paper, a neural learning based compensation mechanism has been exploited to overcome the effect of the unknown payload as well as uncertainties associated with the telerobot model and the environment. Guaranteed transient performance has been theoretically established. The deterministic learning technique has been employed, such that the neural learned knowledge can be efficiently reused. We performed comparative experiments and demonstrate the effectiveness of the proposed design techniques.
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/23135
专题复杂系统管理与控制国家重点实验室_先进机器人
推荐引用方式
GB/T 7714
Chenguang Yang,Junshen Chen,Long Cheng. Neural learning enhanced teleoperation control of robots with uncertainties[C],2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chenguang Yang]的文章
[Junshen Chen]的文章
[Long Cheng]的文章
百度学术
百度学术中相似的文章
[Chenguang Yang]的文章
[Junshen Chen]的文章
[Long Cheng]的文章
必应学术
必应学术中相似的文章
[Chenguang Yang]的文章
[Junshen Chen]的文章
[Long Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。