NeuroCubeRehab: A pilot study for EEG classification in rehabilitation practice based on spiking neural networks
Yixiong Chen; Jin Hu; Nikola Kasabov; Zeng-Guang Hou; Long Cheng
2013
会议名称20th International Conference on Neural Information Processing
会议日期Nov, 2013
会议地点Daegu
会议举办国South Korea
摘要One of the most important issues among active rehabilitation technique is how to extract the voluntary intention of patient through bio-signals, especially EEG signal. This pilot study investigates the feasibility of utilizing a 3D spiking neural networks-based architecture named NeuCube for EEG data classification in the rehabilitation practice. In this paper, the architecture of the NeuCube is designed and a Functional Electrical Stimulation (FES) rehabilitation scenario is introduced which requires accurate classification of EEG signal to achieve active FES control. Three classes of EEG signals corresponding to three imaginary wrist motions are collected and classified. The NeuCube architecture provides promising classification results, which demonstrates our proposed method is capable of extracting the voluntary intention in the rehabilitation practice.
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/23146
专题复杂系统管理与控制国家重点实验室_先进机器人
推荐引用方式
GB/T 7714
Yixiong Chen,Jin Hu,Nikola Kasabov,et al. NeuroCubeRehab: A pilot study for EEG classification in rehabilitation practice based on spiking neural networks[C],2013.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yixiong Chen]的文章
[Jin Hu]的文章
[Nikola Kasabov]的文章
百度学术
百度学术中相似的文章
[Yixiong Chen]的文章
[Jin Hu]的文章
[Nikola Kasabov]的文章
必应学术
必应学术中相似的文章
[Yixiong Chen]的文章
[Jin Hu]的文章
[Nikola Kasabov]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。