A simplified recurrent neural network for solving nonlinear variational inequalities
Long Cheng; Zeng-Guang Hou; Min Tan; Xiuqing Wan
2008
会议名称 IEEE International Joint Conference on Neural Networks (IJCNN)
会议日期JUN 01-08, 2008
会议地点Hong Kong
会议举办国China
摘要A recurrent neural network is proposed to deal with the nonlinear variational inequalities with linear equality and nonlinear inequality constraints. By exploiting the equality constraints, the original variational inequality problem can be transformed into a simplified one with only inequality constraints. Therefore, by solving this simplified problem, the neural network architecture complexity is reduced dramatically. In addition, the proposed neural network can also be applied to the constrained optimization problems, and it is proved that the convex condition on the objective function of the optimization problem can be relaxed. Finally, the satisfactory performance of the proposed approach is demonstrated by simulation examples.
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/23159
专题复杂系统管理与控制国家重点实验室_先进机器人
推荐引用方式
GB/T 7714
Long Cheng,Zeng-Guang Hou,Min Tan,et al. A simplified recurrent neural network for solving nonlinear variational inequalities[C],2008.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Long Cheng]的文章
[Zeng-Guang Hou]的文章
[Min Tan]的文章
百度学术
百度学术中相似的文章
[Long Cheng]的文章
[Zeng-Guang Hou]的文章
[Min Tan]的文章
必应学术
必应学术中相似的文章
[Long Cheng]的文章
[Zeng-Guang Hou]的文章
[Min Tan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。