A recurrent neural network for non-smooth nonlinear programming problems
Long Cheng; Zeng-Guang Hou; Min Tan; Xiuqing Wang; Zengshun Zhao; Sanqing Hu
2007
会议名称 IEEE International Joint Conference on Neural Networks (IJCNN)
会议日期AUG 12-17, 2007
会议地点Orlando
会议举办国USA
摘要A recurrent neural network is proposed for solving non-smooth nonlinear programming problems, which can be regarded as a generalization of the smooth nonlinear programming neural network used in [1]. Based on the non-smooth analysis and the theory of differential inclusions, the proposed neural network is demonstrated to be globally convergent to the exact optimal solution of the original optimization problem. Compared with the existing neural networks, the proposed approach takes both equality and inequality constraints into account, and no penalty parameters have to be estimated beforehand. Therefore, it can solve a larger class of non-smooth programming problems. Finally, several illustrative examples are given to show the effectiveness of the proposed neural network.
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/23162
专题复杂系统管理与控制国家重点实验室_先进机器人
推荐引用方式
GB/T 7714
Long Cheng,Zeng-Guang Hou,Min Tan,et al. A recurrent neural network for non-smooth nonlinear programming problems[C],2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Long Cheng]的文章
[Zeng-Guang Hou]的文章
[Min Tan]的文章
百度学术
百度学术中相似的文章
[Long Cheng]的文章
[Zeng-Guang Hou]的文章
[Min Tan]的文章
必应学术
必应学术中相似的文章
[Long Cheng]的文章
[Zeng-Guang Hou]的文章
[Min Tan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。