Neural networks enhancedadaptive admittance control of optimized robot-environment interaction
Chenguang Yang; Guangzhu Peng; Yanan Li; Rongxin Cui; Long Cheng; Zhijun Li
发表期刊IEEE Transactions on Cybernetics
2018
摘要In this paper, an admittance adaptation method has been developed for robots to interact with unknown environments. The environment to be interacted with is modeled as a linear system. In the presence of the unknown dynamics of environments, an observer in robot joint space is employed to estimate the interaction torque, and admittance control is adopted to regulate the robot behavior at interaction points. An adaptive neural controller using the radial basis function is employed to guarantee trajectory tracking. A cost function that defines the interaction performance of torque regulation and trajectory tracking is minimized by admittance adaptation. To verify the proposed method, simulation studies on a robot manipulator are conducted.
关键词Admittance control neural networks (NNs) observer optimal adaptive control robot–environment interaction
DOI10.1109/TCYB.2018.2828654
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/23168
专题复杂系统管理与控制国家重点实验室_先进机器人
推荐引用方式
GB/T 7714
Chenguang Yang,Guangzhu Peng,Yanan Li,et al. Neural networks enhancedadaptive admittance control of optimized robot-environment interaction[J]. IEEE Transactions on Cybernetics,2018.
APA Chenguang Yang,Guangzhu Peng,Yanan Li,Rongxin Cui,Long Cheng,&Zhijun Li.(2018).Neural networks enhancedadaptive admittance control of optimized robot-environment interaction.IEEE Transactions on Cybernetics.
MLA Chenguang Yang,et al."Neural networks enhancedadaptive admittance control of optimized robot-environment interaction".IEEE Transactions on Cybernetics (2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chenguang Yang]的文章
[Guangzhu Peng]的文章
[Yanan Li]的文章
百度学术
百度学术中相似的文章
[Chenguang Yang]的文章
[Guangzhu Peng]的文章
[Yanan Li]的文章
必应学术
必应学术中相似的文章
[Chenguang Yang]的文章
[Guangzhu Peng]的文章
[Yanan Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。