CASIA OpenIR  > 模式识别国家重点实验室  > 自然语言处理
Addressing the Under-translation Problem from the Entropy Perspective
Zhao, Yang1; Zhang, Jiajun1; Zong, Chengqing1; He, Zhongjun2; Wu, Hua2
2019
会议名称AAAI
会议日期2019
会议地点Honolulu, Hawaii, USA
摘要

Neural Machine Translation (NMT) has drawn much attention
due to its promising translation performance in recent
years. However, the under-translation problem still remains a
big challenge. In this paper, we focus on the under-translation
problem and attempt to find out what kinds of words are
more likely to be ignored. Through analysis, we observe that
a source word with a larger translation entropy is more inclined
to be dropped. To address this problem, we proposed
a coarse-to-fine framework, in which we first introduce a
simple strategy to reduce the entropy of high-entropy words
through constructing the pseudo target sentences. Then we
propose three methods, including pre-training method, multitask
method and two-pass method, to encourage the neural
model to focus on these high-entropy words. Experimental
results on various translation tasks show that our method can
significantly improve the translation quality and substantially
reduce the under-translation cases of high-entropy words.

文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/23194
专题模式识别国家重点实验室_自然语言处理
作者单位1.中国科学院自动化研究所
2.百度
第一作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Zhao, Yang,Zhang, Jiajun,Zong, Chengqing,et al. Addressing the Under-translation Problem from the Entropy Perspective[C],2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Yang]的文章
[Zhang, Jiajun]的文章
[Zong, Chengqing]的文章
百度学术
百度学术中相似的文章
[Zhao, Yang]的文章
[Zhang, Jiajun]的文章
[Zong, Chengqing]的文章
必应学术
必应学术中相似的文章
[Zhao, Yang]的文章
[Zhang, Jiajun]的文章
[Zong, Chengqing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。