Free-Form Image Inpainting via Contrastive Attention Network | |
Xin,Ma1,2,3![]() ![]() ![]() | |
2021-01 | |
Conference Name | International Conference on Pattern Recognition (ICPR) |
Conference Date | Jan 10-15, 2021 |
Conference Place | Milan, Italy |
Publisher | IEEE |
Abstract | Most deep learning based image inpainting approaches adopt autoencoder or its variants to fill missing regions in images. Encoders are usually utilized to learn powerful representational spaces, which are important for dealing with sophisticated learning tasks. Specifically, in image inpainting tasks, masks with any shapes can appear anywhere in images (i.e., free-form masks) which form complex patterns. It is difficult for encoders to capture such powerful representations under this complex situation. To tackle this problem, we propose a self-supervised Siamese inference network to improve the robustness and generalization. It can encode contextual semantics from full resolution images and obtain more discriminative representations. we further propose a multi-scale decoder with a novel dual attention fusion module (DAF), which can combine both the restored and known regions in a smooth way. This multi-scale architecture is beneficial for decoding discriminative representations learned by encoders into images layer by layer. In this way, unknown regions will be filled naturally from outside to inside. Qualitative and quantitative experiments on multiple datasets, including facial and natural datasets (i.e., Celeb-HQ, Pairs Street View, Places2 and ImageNet), demonstrate that our proposed method outperforms state-of-the-art methods in generating high-quality inpainting results. |
Indexed By | EI |
Sub direction classification | 图像视频处理与分析 |
Document Type | 会议论文 |
Identifier | http://ir.ia.ac.cn/handle/173211/44842 |
Collection | 智能感知与计算 |
Corresponding Author | Ran He |
Affiliation | 1.School of Artificial Intelligence,University of Chinese Academy of Sciences 2.Vision Intelligence Center, AI Platform, Meituandianping Group 3.NLPR & CEBSIT, CASIA 4.University of Science and Technology of China |
First Author Affilication | Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China |
Corresponding Author Affilication | Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China |
Recommended Citation GB/T 7714 | Xin,Ma,Xiaoqiang Zhou,Huaibo Huang,et al. Free-Form Image Inpainting via Contrastive Attention Network[C]:IEEE,2021. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Free-Form Image Inpa(2477KB) | 会议论文 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment