基于订单数据挖掘的城市出租车需求预测研究 | |
张驰展![]() | |
2021-05-26 | |
Pages | 72 |
Subtype | 硕士 |
Abstract | 出租车因其灵活、便捷的特点,逐渐成为备受城市居民喜爱的一种出行方式。随着在线打车平台的出现,“车寻人”的传统出租车运营形式逐步转变为乘客叫单和司机接单的“按需出行”模式,并催生了网约车和顺风车等行业。然而由于司机和乘客之间供需关系的时空动态变化性,“打车难”的情况时有发生。通过挖掘历史打车订单数据中的有效信息并精确预测未来的打车需求分布,可提前合理配置出租车 (网约车) 资源,缓解供需不匹配的问题,对于提升居民的出行效率具有重要的意义。出租车需求在时间上波动性较强且受早晚高峰影响,空间上分布差异大且区域间依赖关系复杂,同时还受到天气、节假日等因素的影响,因此精确的出租车需求预测面临着严峻的挑战。 |
Other Abstract | Taxis have gradually become a popular way of travel by urban residents thanks to its flexibility and convenience. With the emergence of online ride-hailing platforms, the traditional taxi operation form of “car-seeking”has gradually transformed into the“Mobility-on-Demand”mode by passengers calling and drivers taking orders, giving birth to the online car-hailing and ride-sharing industry. However, due to the spatio-temporal dynamic variability of the supply-demand relationship between drivers and passengers, sometimes it is difficult to take a taxi. By mining the valid information in historical taxi-hailing order data and accurately predicting the distribution of future taxi demand, it is possible to reasonably allocate taxi (online car-hailing) resources in advance and alleviate the problem of mismatch between supply and demand, which is of great significance for improving the travel efficiency of residents. Taxi demand fluctuates strongly in time and is affected by morning and evening peaks, with large spatial distribution differences and complex inter-regional dependencies. At the same time, it is also affected by factors such as weather and holidays. Therefore, its accurate prediction |
Keyword | 出租车需求预测,数据挖掘,多任务学习,长短期记忆网络,深度学习 |
Language | 中文 |
Sub direction classification | 人工智能+交通 |
Document Type | 学位论文 |
Identifier | http://ir.ia.ac.cn/handle/173211/44850 |
Collection | 复杂系统管理与控制国家重点实验室_平行智能技术与系统团队 |
Recommended Citation GB/T 7714 | 张驰展. 基于订单数据挖掘的城市出租车需求预测研究[D]. 中国科学院自动化研究所. 中国科学院自动化研究所,2021. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
张驰展毕业论文-最终版.pdf(18350KB) | 学位论文 | 开放获取 | CC BY-NC-SA |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment