Attention-Aware Sampling via Deep Reinforcement Learning for Action Recognition | |
Dong, Wenkai1,3![]() ![]() ![]() | |
2019 | |
Conference Name | AAAI Conference on Artificial Intelligence |
Conference Date | January 27 – February 1, 2019 |
Conference Place | Hilton Hawaiian Village, Honolulu, Hawaii, USA |
Publisher | AAAI |
Abstract | Deep learning based methods have achieved remarkable progress in action recognition. Existing works mainly focus on designing novel deep architectures to achieve video representations learning for action recognition. Most methods treat sampled frames equally and average all the frame-level predictions at the testing stage. However, within a video, discriminative actions may occur sparsely in a few frames and most other frames are irrelevant to the ground truth and may even lead to a wrong prediction. As a result, we think that the strategy of selecting relevant frames would be a further important key to enhance the existing deep learning based action recognition. In this paper, we propose an attentionaware sampling method for action recognition, which aims to discard the irrelevant and misleading frames and preserve the most discriminative frames. We formulate the process of mining key frames from videos as a Markov decision process and train the attention agent through deep reinforcement learning without extra labels. The agent takes features and predictions from the baseline model as input and generates importance scores for all frames. Moreover, our approach is extensible, which can be applied to different existing deep learning based action recognition models. We achieve very competitive action recognition performance on two widely used action recognition datasets. |
Document Type | 会议论文 |
Identifier | http://ir.ia.ac.cn/handle/173211/48633 |
Collection | 智能感知与计算 |
Corresponding Author | Zhang, Zhaoxiang |
Affiliation | 1.Center for Research on Intelligent Perception and Computing (CRIPAC), National Laboratory of Pattern Recognition (NLPR) 2.Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Institute of Automation, Chinese Academy of Sciences (CASIA) 3.University of Chinese Academy of Sciences |
First Author Affilication | Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China |
Corresponding Author Affilication | Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China; Institute of Automation, Chinese Academy of Sciences |
Recommended Citation GB/T 7714 | Dong, Wenkai,Zhang, Zhaoxiang,Tan, Tieniu. Attention-Aware Sampling via Deep Reinforcement Learning for Action Recognition[C]:AAAI,2019. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
4836-Article Text-79(506KB) | 会议论文 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment