CASIA OpenIR  > 毕业生  > 博士学位论文
基于视觉的人的运动跟踪和识别的研究
其他题名Study on Vision Based Human Motion Tracking and Recognition
胡长勃
学位类型工学博士
导师马颂德
2001-04-01
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词视觉 运动跟踪 识别
摘要在图象序列出发,自动跟踪和识别人的运动是计算机视觉和图 象处理的一个重要研究方向。本文对这一问题进行了研究,主要工 作可以归纳如下: (1)从简单模型到复杂模型,本文研究了人体跟踪的两个问题: a)仿射模型下的人脸姿态跟踪b)结构化的人体模型的跟踪。 a)中,我们进行了仿射模型下人脸姿念估计的工作。在金字 塔结构下,用Levenberg—Marquard法对狄度相关能量进行最 小化求解模型参数,为了求解出精度高和在序列上连续性好 的姿态跟踪结果,我们引用了鲁棒性方法和参数预测与平滑 方法。人脸跟踪和视频重写的实验表明此方法的效果。 b)中,我们提出了人体结构的矩形连接模型。为了能鲁棒地 估计在序列上模型的参数,我们进行了两项工作,一是通过 a-β-γ滤波给定模型初值;二是通过基因算法寻找最优匹 配。对该算法进行了实际序列的实验,表明了算法具有一定 的鲁棒性。 (2)研究了运动轨迹的主值曲线表示和动作识别。通过提取HSI 空间皮肤颜色,并进行运动预测进行手和脸的跟踪并提取运 动轨迹曲线。本文主要探讨了在时间和空间上有变形的情况 下如何进行曲线的匹配并进行了太极拳势的识别实验。本方 法的主要优点是不需要大量的训练样本。 (3)我们提出了基于主动形状模型的概率密度传播算法和虚拟鼠 标的思想。我们首先用一批手的轮廓建立主元分析表示,每 个新的形状可以近似地由一组形状基张成的空间中表示这 一组系数可以认为是变形参数,和另外一组刚体参数(位置、 尺度、旋转)合在一起构成状态。我们把通过应用概率密度 传播算法的对状念进行采样,测量和传播,然后汁算期望的 状态值,并以此为初值,应用主动形状模型进行精确的定位。 最后,我们以手势模拟鼠标的动作,通过计算状念的转移判 断鼠标的动作,手的轮廓的质心位置作为鼠标的位置。跟踪 和鼠标状念识别可以近似实时地进行。 (4)我们提出基于动念轨迹匹配的跟踪和识别的一体化方法。该方法在跟踪和识别系统之间引入反馈机制,能很好的解决有 限制系统的跟踪和识别问题。我们以手写数字的以别为例进 行这项研究。首先,经过训练样本的学习,建立各数字的轨 迹模型,然后应用概率密度传播方法跟踪手的轮廓的运动, 每个模态和当前形成的运动轨迹进行动念轨迹匹配,并获得 匹配的概率,每个模态的概率反馈回跟踪过程以便控制因子 采样的参数取值,其采样个数和该模态的概率成正比,其结 果是使跟踪能够按照最佳的模态进行
其他摘要Human motion tracking and recognition from a image sequence is an important research field in computer vision and image processing. This paper mainly study this problem and can be concluded as following: (1)From simple model to complex model, two human body motion problems are studied: a) face pose tracking under affine model; b) structural human model tracking. In a), we carry out human face pose estimation work from image sequence under affine model. Under pyramid structure, we use Levenberg-Marquard method to minimize gray scale correlation energy to solve the model parameters. We introduce robust estimation and parameter prediction and smoothing techniques to increase precision and continuity. Human face tracking experiments and application in video rewrite show this method is effective. In b), we propose a rectangle connection model for human structure. In order to find out the model parameters in the sequence, we use two techniques. The first is prediction the initial model value through α-β-γ filter. The second is to find the best match through genetic algorithms. Experiments on real sequence show that the algorithm is robust in some degree. (2)We study eigen-curve representation of motion trajectory and action recognition based on this technique. Through skin color detection in HSI space, we apply motion prediction to track human face and hands and compute the motion trajectories. Then we study how to match trajectories under deformation in spatial-temporal space and conduct the experiment of Taiji posture recognition. Not need large number of training data is the main advantage of this method. 3)We propose active shape model based conditional density propagation algorithm and the idea of virtual mouth. We first construct primary component analysis of hands contour. Then new hands can be represented approximately in term of PCA bases. This coefficients can be viewed as deformation parameters. The state can be constructed from these parameters together with the rigid motion parameters(position, scale and rotation). Then using conditional density propagation algorithm, we sample, predict and propagate the state in time axis. And to compute the expectation state. Initialization with this state, we use active shape model to refine the location and deformation of the target. Finally, we simulate mouse action by gesture. The mouth action is judged by the sate transition, and the mouth mouse position is computed from the centroid of the contour. The tracking and recognition can be realized in near real time. (4)We propose a integrative method for tracking and recognition based on dynamic motion trajectory matching. This method introduces feedback mechanics between tracking system and recognition system, and can solve the tracking and recognition in constraint system with better performance. We conduct this study in example of digit writing image. First, through training samples, we develop the moti
馆藏号XWLW654
其他标识符654
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/5719
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
胡长勃. 基于视觉的人的运动跟踪和识别的研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2001.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[胡长勃]的文章
百度学术
百度学术中相似的文章
[胡长勃]的文章
必应学术
必应学术中相似的文章
[胡长勃]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。