CASIA OpenIR  > 毕业生  > 博士学位论文
弹性变形模型在图象变形匹配及其它领域中的应用
其他题名Using Elastic Models for Deformable Image Matching and Other Applications
蔡志锋
学位类型工学博士
导师卢汉清
2003-08-01
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词弹性变形模型 变形匹配 混合弹性模型 特征信息 Elastic Deformable Model Deformable Matching Hybrid Elastic Model Feature Information
摘要弹性变形模型和基于弹性变形模型的图象变形匹配方法是近些年发 展起来的热门研究课题之一。由于弹性变形模型的建模方法能够实现对 物体客观、自然、符合物理规律和特性的描述,使得基于弹性变形模型 的图象变形匹配方法能够处理相互之间存在复杂变形差异的物体的对 应匹配,具有广泛的应用背景。目前,它己经在各个领域中发挥着重要 的作用,例如在图形学、计算机视觉、医学图象处理以及外科手术导引 仿真等等。 作者在进行变形模型研究的过程中,对弹性变形模型在图象非刚体 匹配算法中的应用进行了深入研究,提出了一些新的变形匹配方法,其 主要贡献可归纳为以下几个方面: [1]提出了一种基于包含几何形状信息的弹性变形模型来进行图象 变形匹配的新方法。该模型融合了基于区域的和基于特征的这 两类外力求取方法,提出了一种包含几何形状信息的外力求取 方法来驱动模型的变形,从而提高了变形的准确度和可靠性。 [2]提出了一种鲁棒的基于混合弹性模型的全自动弹性匹配方法。 该方法把图象匹配问题中相关性的寻找和非刚体变形两个过程 有机地结合在一起,直接利用匹配图象之间的灰度信息来实现 图象之间的匹配。利用多分辨率匹配策略利线性模型使得整个 模型的计算复杂性大大降低。由于这种匹配方法以变形模型作 为匹配的变换关系,因此具有一般性,小仅仅适用于医学图象 匹配,同时还可以用于其他领域图象之间的变形匹配。 [3]提出了一种改进的混合弹性模型用于图象的变形匹配和古人类 形态学的研究。该方法不仅利用图像的灰度信息,还增加了图 像的灰度加权直方图信息和图像的梯度等特征信息来实现图像 之间的匹配;并且通过多分辨率迭代策略来寻找线性弹簧网的 初始网格对应点,从而进一步提高了匹配变形的准确性。 [4]三维空间数据的研究与分析一直是一个热门的研究,传统的方法是直接对数据进行三维空间的操作,由于其数据量大,一般计算量都比较大。本论文提出了一个解决三维空间数据的匹配问题的新思想。该思想首先把三维空间的数据通过极坐标的方式转换成2.5维的数据,并进一步利用前述二维空间的非刚体匹配方法进行处理,从而实现三维空间而数据在二维平面空间的变形匹配,为图像三维匹配提供了一个新的处理方法。
其他摘要Elastic deformable models and deformable image matching methods have been developed in recent years. Because elastic deformable models can describe the object perfectly in a physical way, the image matching methods based on them can remove the detailed structural variation between individuals by matching a study image to a target image. Thus these techniques have widely been used in various fields, for example, computer graphics, computer vision, medical image processing and so on. The author performed a deep study of this area and proposed some new methods. The main contributions in this thesis can be summarized as follows: [1] Propose a new elastic matching method incorporating geometry based shape information. This elastic deformable model integrates two kinds of methods to compute the driving forces: a method based on region information and a method based on feature information. A new computing external forces method, which incorporating geometry shape information, is proposed. These external forces drive the deformation more correctly and robustly. [2] Propose a new robust elastic matching method based on a hybrid elastic model. This method can jointly estimate the correspondence and nor-rigid matching, which need not extract features, works directly on gray level images. This method also takes a multiresolution strategy and linear model to reduce the computation complexity, and approaches better matching. The method can not only be used for medical image matching field, but also be used for other deformable matching. [3] Compared with the former hybrid elastic model, a new improved model is presented for deformable image matching and hominid morphology studies. This improved method not only uses the gray level information, but also involves the weighted gray histogram feature information and the image gradient information to realize deformable image matching. This new improved method takes a multiresolution strategy to search tile initial position of the corresponded spring net grid, which improve the deformation result more correctly. [4] It is a hot research field for dealing with the 3D data. The traditional methods work directly on original data in the 3D space. Because of its huge data, it is usually time consuming. A new method is proposed to deal with the 3D data. The 3D data is first described in polar representation, so that, the 3D data is converted into 2.5D data and can be described in 2D space: In this case, we can apply our deformable matching method to do non-rigid image matching in the 2D space. Finally, the matching result can be converted into 3D space again. With this method, we can realize the 3D deformable matching in the 2D space.
馆藏号XWLW744
其他标识符744
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/5783
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
蔡志锋. 弹性变形模型在图象变形匹配及其它领域中的应用[D]. 中国科学院自动化研究所. 中国科学院研究生院,2003.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
博士生学位论文-744.pdf(12151KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[蔡志锋]的文章
百度学术
百度学术中相似的文章
[蔡志锋]的文章
必应学术
必应学术中相似的文章
[蔡志锋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。